مقایسه کارآیی روش‌های طبقه‌بندی پیکسل پایه (روش‌های شبکه عصبی آرتمپ فازی و تصمیم‌گیری درختی) و شیءگرا در تهیه نقشه کاربری اراضی (مطالعه موردی: حوزه خشک و نیمه‌خشک میمه، استان ایلام)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری بیابان‌زدایی، دانشکده منابع طبیعی و کویر شناسی، دانشگاه یزد

2 استادیار دانشکده منابع طبیعی، دانشکده اردکان

چکیده

نقشه کاربری اراضی، از ابزارهای پایه برای مدیران و برنامه­ریزان در راستای توسعه پایدار مناطق مختلف است. روش­های مختلفی برای تهیه نقشه کاربری اراضی ارائه شده ­است. تهیه نقشه کاربری اراضی با استفاده از تصاویر ماهواره­ای با بهره­گیری از تکنیک­های مختلفی از جدیدترین و مهم­ترین این روش­ها است. هدف از این تحقیق انجام، بررسی کارایی روش­های طبقه­بندی پیکسل پایه (روش­های شبکه عصبی آرتمپ فازی و تصمیم­گیری درختی) و روش طبقه‏بندی مبتنی بر شی‏های تصویری (شیءگرا) با استفاده از داده­های ماهواره­ی لندست 8 مربوط به سال 2013 جهت تهیه نقشه کاربری اراضی حوزه میمه، استان ایلام است. پس از انجام تصحیحات لازم برروی تصاویر ماهواره­ای، طبقات مختلف کاربری اراضی تعریف و نمونه­های آموزشی انتخاب شد. نتایج طبقه‏بندی با استفاده از سه روش شبکه عصبی آرتمپ فازی، تصمیم­گیری درختی جینی و شیءگرا نشان می­دهد روش شیءگرا، دقت کل 30/95 و ضریب کاپای 88/90 درصد و روش­های تصمیم­گیری درختی جینی و شبکه عصبی آرتمپ فازی، به ترتیب دقت کل 32/80 و 20/72 و ضریب کاپای 75/68 و 18/36را ایجاد کرده است از این­رو، روش طبقه­بندی شیءگرا با اختلاف دقت کل 98/14% و 1/23% و ضریب کاپای 13/22% و 7/54% نسبت به روش­های تصمیم­گیری درختی جینی و شبکه عصبی آرتمپ فازی، در این مطالعه از دقت بالاتری برخوردار است. با مقایسه مساحت نقشه­های حاصل از سه روش طبقه­بندی، مساحت کاربری­های کشاورزی، مرتع فقیر و اراضی مسکونی تقریباً نزدیک هم هستند. همچنین بیشترین اختلاف مساحت مربوط به کاربری‎ مرتع متوسط و کمترین اختلاف نیز مربوط به کاربری اراضی مسکونی بود. 

کلیدواژه‌ها


[1].   Ahmadi Zadeh, S. (2003). Determination of quantitative models of ecological in GIS environment, doctoral thesis of Forestry, Tarbiat Modares University. 158 pages, (in Farsi).
[2].   Alavipanah, S. K. (2003). Application Remote Sensing in Geology (Earth Sciences), Geographic Institute of Tehran University Press, 478 pages, (in Farsi).
[3].   Alimohamadi, A., Motakan, A. A., Zeiaeian, P., & Tabatabaei. H. (2009). Comparison of pixel-based classification methods, object-oriented and decision trees forest type mapping using remote sensing data (Case study: forest Astara), Journal of Geographical Sciences and Applied Research, 10 (13), 20 pages, (in Farsi).
[4].   Amiri, A., Chavooshi, H., & Amini, J. (2007). Comparison of Three Satellite Image Classification: Fuzzy, Neural Network and Minimum Distance. Geomatic Conference, National Cartographic Center, Tehran. Austria, pp. 20, (in Farsi).
[5].   Arekhi, S., & Adibnejad, M. (2011). Efficiency assessment of the of Support Vector Machines for land use classification using Landsat ETM+ data (Case study: Ilam Dam Catchment). Iranian Journal of Range and Desert Reseach, 18 (3), 420-440, (in Farsi).
[6].   Baatz, M., & Schape, A. (1999). Object-oriented and multi-scale image analysis in semantic network, in Proc. 2nd Int. Symposium on Operalization of Remote Sensing, Ensched, ITC, 148-157.
[7].   Blaschke. T., & Lang, S. (2006). Briding remote sensing and GIS-what are the main supportive pillsrs.
[8].   Carpenter, G. A., Grossberg, S., & Reynolds, J. H. (1991). ARTMAP: Supervised Real time learning and classification of nonstationary data by a self-organizing neural network, Neural networks. 4: 565-588
[9].   Definiens Imaging Gmb, H, 2006. Definiens Professional5 User Guide, http//:www.­definiens.­com/Userguide. Pdf, 249 pp.
[10].         Fazizadeh, B. (2007). Comparison of pixel-based and object-oriented methods in land use mapping Master's thesis, GIS Center Tabriz University, (in Farsi).
[11].         Fazizadeh, B., & Helali, H. (2010). Comparison of pixel-based and object-oriented and parameters affecting the on land use/cover West Azerbaijan province, Geography Studies, 71, 73-84, (in Farsi).
[12].         Ghose, M. K, Pradha, R., & Ghose Sucheta, S. (2010). Decision Tree Classification of Remotely, International Journal of Advanced Computer Science and Applications, 1: 93-101. http://www. ITC. com (accessed in July 2008). pp. 3-99.
[13].         Huang, L. & Ni., L. (2008). Object-Oriented Classification of High Resolution Satellite Image for Better Accuracy, Proceedings of the 8th International Symposium on Spatial Accuracy Assessmenin Natural Resources and Envir onmental Sciences, Shanghai, P. R. China, June 25-27, 211-218.
[14].         Hussaina, M., Chen, D., Cheng, A., Wei, H., & Stenley, D. (2013). Change detection from remotely sensed images: From pixel-based to object-based approaches, ISPRS Journal of Photogrammetry and Remote Sensing, International Conference on Object-based Image Analysis (OBIA 2006), university of Salzburg, 91–106.
[15].         Jianjun, J. Jie, Z., Hongan, W., Li, A., Hailing, Z., Li, Z., & Jun, X. (2005). Land Cover Changes in the Rural-urban Interaction of Xian Region Using Landsat TM/ETM Data, Journal of Geographical Science, 4 (15): 423-430.
[16].         Karami, A., Khorani, A. A., Falahshamsi, S. R., Mosavi, V., & Khosravi, GH. (2012). Object-oriented application of remote sensing to map gully erosion, 20th Conference of Geomatics of Iran, 8 pp, (in Farsi).
[17].         Lippitt, C. D, Rogan, J, Li, Z, Eastman, J. R & Jones, T. G. (2008). Mapping Selective Logging in Mixed Deciduous Forest: A Comparison of Machine Learning Algorithms/Photogrammetric Engineering & Remote Sensing, 74 1201–1211.
[18].         Lu, D., Mausel, P., Brondi´zio, E., & Moran, E. (2004). Change detection techniques. INT. J. REMOTE SENSING, 25 (12), 2365-2407.
[19].         Lu, D., & Weng, Q. (2007). a survey of image classification methods and techniques for improving classification performance. International Journal of Remote Sensing, 28 (5): 823-870.
[20].         Mackie, R. I. (2013). Dynamic analysis of structures on multicore computers- Achieving efficiency through object oriented design, Advances in Engineering Software 66: 3–9.
[21].         Mass, J. F (2003). An Artificial Neural Networks Approach to Map Land Use/cover Using Landsat Imagery and Ancillary Data, Proceedings of the International Geosciences and Remote Sensing Symposium IEEE IGARSS 2003, Vol. VI, pp. 3498-3500, Toulouse, France.
[22].         Matinfar, H. R., Sarmadian, F., Alavipanah, S. K., & Heck, R. (2008). Characterizing Land use/land cover types by Landsat7data based upon Object oriented approach in Kashan region, Iranian Journal of Range and Desert Reseach, 14 (4): 589-602.
[23].         Mohammed Ismail, Z. (2011). Monitoring of changes land use Karaj of using remote sensing techniques, Iranian Journal of Soil Research. 24 (1): 81-88, in Farsi).
[24].         Petropoulos, G. P., Kalaitzidis, C., & Vadrevu, K. P. (2012). Support vector machines and object-based classification for obtaining land-use/cover cartography from Hyperion hyperspectral imagery, Computers & Geosciences, 41: 99–107.
[25].         Puissant, A., Rougier, S., & Stumpf, A. (2014). Object-oriented mapping of urban trees using Random Forest classifiers, International Journal of Applied Earth Observation and Geoinformation, 26: 235–245.
[26].         Rafieyan. O., Darvishsefat. A. A., Babaii. S & Mataji. A. (2011). Evaluation of pixel-based and object-based classification methods for tree identification using aerial images (Case study: a forestation in Chamestan-Nur). Iranian Journal of Forest, 3 (1): 35-47, (in Farsi).
[27].         Schiewe, J. (2002). Segmentation of high-resolution remotely sensed data concepts, application and problems, in Symposium on geospatial theory, processing and applications, Ottawa, Canada, 235-242.
[28].         Sharma, R., Ghosh, A., & Joshi, P. K. (2014). Decision tree approach for classification of remotely sensed satellite data using open source support Degree Level: field measurements across scales: comparing pixel aggregation and image For Classification, International Journal of Engineering Development and Research, 2: 1-5.
[29].         Shataee, SH., & Abdi, O. (2007). Land cover mapping in mountainous lands of Zagros areas using ETM+ data case study: Sorkhab watershad, Lorestan province, Agricultural Sciences and Natural Resource Journal, 14(1), 10 pages, (in Farsi).
[30].         Wiley, J., & Sons, A. R. (2002). Statistical Pattern Recognition, 2nd Edition.
[31].         Yaghobzadeh, M., & Akbarpour, A. (2011). The effect of satellite image classification algorithm based on curve number runoff and maximum flood discharge using GIS and RS, Geography and Development 9 (22), 5-22, (in Farsi).
[32].         Yan, GAO, (2003). Pixel Based and Object Oriented Image for Coal Fire Research.
[33].         Yu, Q., P. Gong., N. Clinton., G. Biging., Kelly, M., & Schirokauer, D. (2006). Object-Based detailed vegetation classification with airborn high spatial resolution semote sensing imagery. Photogrammetric Engineering & Remote Sensing, 72 (7), 799-811.
[34].         Yuan, F., Bauer, M. E., Heinert, N. J. & Holden, G. R. (2005). Multi-level Land Cover Mapping of the Twin Cities (Minnesota) Metropolitan Area with Multi-seasonal Landsat TM/ETM+ Data, Geocarto International, 20 (2): 5-14.
[35].  Zadeh, L. (1965). Fuzzy Sets, Inform. Contr, 8: 338-353.
[36].         Zamban, M., Lawrence, R., Bunn, A., and Powell, S. (2006). Effect of Alternative Splitting Rules on Image Processing Using Classification Tree Analysis, Photogrammetric Engineering & Remote Sensing, 72:25-30.