[1]. Abdollahi, S., Bazrafshan, O., & Shekari, M. (2022). Trend Analysis of Drought Characteristics in Iran Using Univariate and Multivariate Idices. Irrigation and Water Engineering, 12(4), 334-353. doi: 10.22125/iwe.2022.150751 [in Farsi]
[2]. Akimov, L. M. (2013). Space-time patterns of atmospheric droughts in Voronezh oblast during growing period. Arid ecosystems, 3(2), 65-70. doi: 10.1134/ S2079096113020029
[3]. Ali, S., Basit, A., Ni, J., Manzoor, Khan, F. U., Sajid, M., Umair, M., & Makanda, T. A. (2023). Impact assessment of drought monitoring events and vegetation dynamics based on multi-satellite remote sensing data over Pakistan. Environmental science and pollution research international, 30(5), 12223–12234. doi: 10.1007/s11356-022-22995-w
[5]. Angearu, C. V., Ontel, I., Boldeanu, G., Mihailescu, D., Nertan, A., Craciunescu, V., ... & Irimescu, A. (2020). Multi-temporal analysis and trends of the drought based on MODIS data in agricultural areas, Romania.
Remote Sensing,
12(23), 3940. doi:
10.3390/rs12233940
[6]. Babaei, F., Vaezi, A., Teheri, M., Zarrinabadi, E., & Eslami, S. F. (2015). Development a regression relationship between rainfed wheat yield and soil properties in a semiarid region, Zanjan Province.
Iranian Journal of Soil and Water Research,
46(4), 715-725. doi:
10.22059/IJSWR.2015.56795 [in Farsi]
[7]. Elhag, K. M., & Zhang, W. (2018). Monitoring and assessment of drought focused on its impact on sorghum yield over Sudan by using meteorological drought indices for the period 2001–2011.
Remote Sensing,
10(8), 1231. doi:
10.3390/rs10081231
[8]. Fentaw, A. E., Yimer, A. A., & Zeleke, G. A. (2023). Monitoring spatio-temporal drought dynamics using multiple indices in the dry land of the upper Tekeze Basin, Ethiopia.
Environmental Challenges, 13, 100781. doi:
10.1016/j.envc.2023.100781
[9]. Ha, T. V., Uereyen, S., & Kuenzer, C. (2023). Agricultural drought conditions over mainland Southeast Asia: Spatiotemporal characteristics revealed from MODIS-based vegetation time-series. International
Journal of Applied Earth Observation and Geoinformation, 121, 103378. doi:
10.1016/j.jag.2023.103378
[10]. Haroon, M. A., Zhang, J., & Yao, F. (2016). Drought monitoring and performance evaluation of MODIS-based drought severity index (DSI) over Pakistan. Natural Hazards, 84, 1349-1366. doi: 10.1007/s11069-016-2490-y
[11]. Heim Jr, R. R. (2002). A review of twentieth-century drought indices used in the United States.
Bulletin of the American Meteorological Society,
83(8), 1149-1166. doi:
10.1175/1520-0477-83.8.1149
[12]. Hosseini, A. S., Zare, M., & Mokhtari, M. H. (2019). Estimating the potential evapotranspiration (PET) using satellite imagery in arid lands. Environmental Engineering & Management Journal (EEMJ), 18(9), 1995-2008.
[13]. Keyantash, J., & Dracup, J. A. (2002). The quantification of drought: an evaluation of drought indices.
Bulletin of the American Meteorological Society,
83(8), 1167-1180. doi:
10.1175/1520-0477-83.8.1167
[14]. Khan, R., & Gilani, H. (2021). Global drought monitoring with drought severity index (DSI) using Google Earth Engine. Theoretical and Applied Climatology, 146(1), 411-427. doi: 10.1007/s00704-021-03715-9
[15]. Kheyri, R., Mojarrad, F., Masompour, J., & Farhadi, B. (2021). Evaluation of drought changes in Iran using SPEI and SC-PDSI. The Journal of Spatial Planning, 25(1), 143-174. doi: 20.1001.1.16059689.1400.25.1.6.1 [in Farsi]
[16]. Melkonyan, A. (2014). Environmental and socio-economic vulnerability of agricultural sector in Armenia.
Science of the Total Environment,
488, 333-342. doi:
10.1016/j.scitotenv.2014.03.126
[17]. Meza, I., Siebert, S., Döll, P., Kusche, J., Herbert, C., Eyshi Rezaei, E., ... & Hagenlocher, M. (2020). Global-scale drought risk assessment for agricultural systems.
Natural Hazards and Earth System Sciences,
20(2), 695-712. doi:
10.5194/nhess-20-695-2020
[18]. Mottaghi, S., Akbari, G. A., Minbashi, M., Allahdadi, I., Zand, E., & Lotfifar, O. (2012). The study of dispersal of english title dominant grass weeds of irrigated wheat fields of Iran and determine the effective environmental factors. Plant Production Technology, 11(2), 13-24. [in Farsi]
[19]. Mu, Q., Zhao, M., Kimball, J. S., McDowell, N. G., & Running, S. W. (2013). A remotely sensed global terrestrial drought severity index.
Bulletin of the American Meteorological Society,
94(1), 83-98. doi:
10.1175/BAMS-D-11-00213.1
[20]. Nafarzadegan, A. R., Ebrahimi-Khusfi, Z., & Kazemi, M. (2021). Spatial characterization of dust emission prone arid regions using feature extraction and predictive algorithms. Applied Geography, 133, 102495. doi:
10.1016/j.apgeog.2021.102495
[21]. Palmer, W. C. (1965). Meteorological drought, Research Paper No. 45: US Weather Bureau. Office of Climatology, US Weather Bureau, Washington DC.
[22]. Selyaninov, G. T. (1928). On agricultural climate valuation. Proc. Agric. Meteor, 20, 165-177.
[23]. Torabinezhad, N., Zarrin, A., & Dadashi-Roudbari, A. A. (2023). Analysis of Different Types of Droughts and Their Characteristics in Iran Using the Standardized Precipitation Evapotranspiration Index (SPEI).
Water and Soil,
37(3), 473-486. doi:
10.22067/JSW.2023.81322.1257 [in Farsi]
[24]. Wang, K., Li, T., & Wei, J. (2019). Exploring drought conditions in the three river headwaters region from 2002 to 2011 using multiple drought indices.
Water,
11(2), 190. doi:
10.3390/w11020190
[25]. Zandifar, S., Jalili, A., Saieedifar, Z., & Naeimi, M. (2022). Assessing drought and human interface on reducing groundwater reserves.
Iranian Journal of Forest and Range Protection Research,
20(1), 199– 218. doi:
10.22092/ijfrpr.2022.356091.1513 [in Farsi]
[26]. Zargar, A., Sadiq, R., Naser, B., & Khan, F. I. (2011). A review of drought indices.
Environmental Reviews,
19, 333-349. doi:
10.1139/a11-013
[27]. Zhao, X., Xia, H., Pan, L., Song, H., Niu, W., Wang, R., ... & Qin, Y. (2021). Drought monitoring over Yellow River basin from 2003–2019 using reconstructed MODIS land surface temperature in Google Earth Engine.
Remote Sensing,
13(18), 3748. doi:
10.3390/rs13183748