تأثیر باکتری Bacillus cereus و سلنیوم بر برخی خصوصیات مورفوفیزیولوژیک و محتوای یونی گونه بیابانی جفنه (.Salsola arbuscula Pall) تحت تنش سرب

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری مدیریت و کنترل بیابان، دانشکده منابع طبیعی و کویرشناسی، دانشگاه یزد، یزد، ایران

2 استاد گروه محیط‌زیست، دانشکده منابع طبیعی و کویرشناسی، دانشگاه یزد، یزد، ایران

3 دانشیار گروه مدیریت و کنترل بیابان، دانشکده منابع طبیعی و کویرشناسی، دانشگاه یزد، یزد، ایران

4 استادیار گروه علوم باغبانی، دانشکده کشاورزی، دانشگاه بیرجند، بیرجند، ایران

10.29252/aridbiom.2024.20802.1968

چکیده

در سال‌های اخیر به‌علت توسعه عملیات معدن‌کاوی، انواع عناصر سنگین به عرصه‌های طبیعی وارد شده است. به دلیل پایداری طولانی مدت عناصر سنگین در خاک و جهت جلوگیری از ورود آنها به زنجیره غذایی، ضرورت دارد تا با روش‌های دوستدار محیط‌زیست مانند گیاه‌پالایی، نسبت به حذف آنها از خاک اقدام گردد. این پژوهش با هدف ارزیابی تأثیر باکتری محرک رشد گیاه (Bacillus  cereus) و سلنیوم، بر توان گیاه‌پالایی گونه جفنه (Salsola arbuscula  Pall.) در خاک آلوده به سرب انجام شد. آزمایشی به صورت فاکتوریل در قالب طرح کامل تصادفی در سه تکرار انجام گرفت. فاکتورهای مورد بررسی شامل غلظت سرب با سه سطح (شاهد، 100 و 200 میلی‌گرم بر کیلوگرم خاک)، باکتری محرک رشد گیاه و سلنیوم (شاهد و غلظت 6 میکرومول) در نظر گرفته شد. نتایج نشان داد که افزایش سرب باعث کاهش معنی‌دار مقدار جذب عناصر غذایی، مقدار کلروفیل و وزن خشک گیاه و افزایش معنی‌دار پرولین و آنتوسیانین و انباشت سرب در ریشه جفنه شد. کاربرد همزمان سلنیوم و Bacillus  cereus باعث افزایش معنی‌دار 40 درصدی سرب ریشه، 29 درصدی وزن خشک گیاه، 36 درصدی کلروفیل و افزایش 17، 18 و 27 درصدی پتاسیم، منیزیم و آهن شد. کاربرد همزمان سلنیوم و Bacillus  cereus باعث کاهش معنی‌دار 30 درصدی آنتوسیانین و 20 درصدی پرولین شد. با توجه به انباشت سرب در ریشة گیاه جفنه، نتیجه‌گیری شد که این گیاه می‌تواند برای فرآیند تثبیت گیاهی در خاک‌های آلوده به سرب مناسب باشد و باکتری Bacillus cereus و سلنیوم با بهبود شرایط بیوشیمیایی گیاه، توانایی گیاه‌پالایی آن را به سرب افزایش دادند. 

کلیدواژه‌ها

موضوعات


[1]. Abd-Allah, E. F., Alqarawi, A. A., Hashem, A., Radhakrishnan, R., Al-Huqail, A. A., Al-Otibi, F. O. N., Malik, J. A., Alharbi, R. I., & Egamberdieva, D. (2018). Endophytic bacterium Bacillus subtilis (BERA 71) improves salt tolerance in chickpea plants by regulating the plant defense mechanisms. Journal of Plant Interactions, 13(1), 37-44. doi: 10.1080/17429145.2017.1414321
[2]. Abdelaal, K., AlKahtani, M., Attia, K., Hafez, Y., Király, L., & Künstler, A. (2021). The role of plant growth-promoting bacteria in alleviating the adverse effects of drought on plants. Biology, 10(6), 520. doi: 10.3390/biology10060520
[3]. Amini Hajiabadi, A., Mosleh Arani, A., & Etesami, H. (2022). Salt-tolerant genotypes and halotolerant rhizobacteria: A potential synergistic alliance to endure high salinity conditions in wheat. Environmental and Experimental Botany, 20, 105033. doi: 10.1016/j.envexpbot.2022.105033
[4]. Amini Hajiabadi, A., Mosleh Arani, A., Ghasemi, S., Rad, M. H., Etesami, H., Shabazi Manshadi, S., & Dolati, A. (2021). Mining the rhizosphere of halophytic rangeland plants for halotolerant bacteria to improve growth and yield of salinity-stressed wheat. Plant Physiology and Biochemistry, 163, 139-153. doi: 10.1016/j.plaphy .2021.03.059
[5]. Asgher, M., Khan, M.I.R., Anjum, N.A., Verma, S., Vyas, D., Per, T.S., Masood, A., & Khan, N.A. (2019). Ethylene and polyamines in counteracting heavy metal phytotoxicity: A crosstalk perspective. Journal of Plant Growth Regulation, 37, 1050–1065. doi: 10.1007/s00344-018-9823-x
[6]. Ashour, W., Zohair, M., El-Beih, A., Hamed, E., Abd El Aty, A. (2021). Biochemical characterization and ecofriendly field application of the plant growth-promoting rhizobacterium Bacillus amyloliquefaciens MH046937 isolated from Salsola imbricata in Tur Sinai, Egypt. Journal of Applied Pharmaceutical Science, 12(1), 94-105. doi: 10.7324/JAPS. 2021. 120109
[7]. Auobi Amirabad, S., Behtash, F., & Vafaee, Y. (2020). Selenium mitigates cadmium toxicity by preventing oxidative stress and enhancing photosynthesis and micronutrient availability on radish (Raphanus sativus L.) cv. Cherry Belle. Environmental science and pollution research international, 27(11), 12476–12490. doi: 10.1007/s11356-020-07751-2
[8]. Azari Najafabadi, S. (2020).  Resistance to Pb Concentration of Rhizospheric Bacteria of Pulicaria Gnaphalodes and Salsola Incanescens Growing on Lead and Zinc Mine Tailings of Kooshk [Master's Thesis, Yazd University]. Central library of Yazd University. https://library.yazd.ac.ir/Inventory/114/15888.htm [in Persian]
[9]. Baker, A.J.M. (1981). Accumulators and excluders –strategies in the response of plant to heavy metals. Journal of Plant Nutrition. 3(1-4), 643-654. doi: 10.1080/019041681 09362867
[10]. Bates, L.S., Waldren, R.P., Teare, I.D. (1973). Rapid determination of free proline for water-stress studies. Plant and Soil, 39, 205–207. doi: 10.1007/BF00018060
[11]. Bauerle, W. L., Wang, G. G., Bowden, J. D., & Hong, C. M. (2006). An analysis of ecophysiological responses to drought in American chestnut. Annals of Forest Science, 63(8), 833-842. doi: 10.1051/forest: 2006066
[12]. Caparrós, P.G., Ozturk, M., Gul, A., Batool, T.S., Pirasteh-Anosheh, H., Turkyilmaz Unal, B., Altay, V., & Toderich, K.N. (2022). Halophytes have potential as heavy metal phytoremediators: A comprehensive review, Environmental and Experimental Botany, 193, 12-39. doi:  10.1016/j.envexpbot.2021.104666
[13]. Copat, C., Grasso, A., Fiore, M., Cristaldi, A., Zuccarello, P., Signorelli, S. S., Conti, G. O., & Ferrante, M. (2018). Trace elements in seafood from the Mediterranean Sea: An exposure risk assessment. Food and chemical toxicology: an international journal published for the British Industrial Biological Research Association, 115, 13–19. doi: 10.1016/j.fct.2018.03.001
[14]. Feng, R., Zhao, P., Zhu, Y., Yang, J., Wei, X., Yang, L., Liu, H., Rensing, C., & Ding, Y. (2021). Application of inorganic selenium to reduce accumulation and toxicity of heavy metals (metalloids) in plants: The main mechanisms, concerns, and risks. The Science of the total environment, 771, 144776. doi: 10.1016/j.scitotenv.2020.144776
[15]. Goswami, M., & Deka, S. (2020). Plant growth-promoting rhizobacteria|alleviators of abiotic stresses in soil:  A review. Pedosphere, 30(1), 40-61. doi: 10.1016/ S1002-0160(19)60839-8
[16]. Handa, N., Kohli, S. K., Thukral, A. K., Bhardwaj, R., Alyemeni, M. N., Wijaya, L., & Ahmad, P. (2018). Protective role of selenium against chromium stress involving metabolites and essential elements in Brassica juncea L. seedlings. 3 Biotech, 8(1), 66. doi: 10.1007/s13205-018-1087-4
[17]. Islam, E., Yang, X., Li, T., Liu, D., Jin, X., & Meng, F. (2007). Effect of Pb toxicity on root morphology, physiology and ultrastructure in the two ecotypes of Elsholtzia argyi. Journal of hazardous materials, 147(3), 806–816. doi: 10.1016/j.jhazmat.2007.01.117
[18]. Kadkhodaie, H., Sodaeizadeh, H., & Mosleh arani, A. (2022). The effects of exogenous application of glycine betain on growth and some physiological characteristics of Brossica napus under drought stress in field condition. Desert Ecosystem Engineering, 3(4), 79-90.
[19]. Lichtenthaler, H. K. (1987). Chlorophyll and carotenoids: pigments of photosynthetic bio-membranes. Methods in Enzymology, 148, 350-382.
[20]. Mahar, A., Wang, P., Ali, A., Awasthi, M. K., Lahori, A. H., Wang, Q., Li, R., & Zhang, Z. (2016). Challenges and opportunities in the phytoremediation of heavy metals contaminated soils: A review. Ecotoxicology and environmental safety, 126, 111–121. doi: 10.1016/j.ecoenv.2015.12.023
[21]. Mosleh arany, A., Khosravi, M., Azimzadeh, H., Sodaeizadeh, H., & Sepahvand, A. (2018). The comparison between Thuja orientalis and Olea europaea in Pb accumulation and their applications for phytoremediation. Journal of Natural Environment, 71(1), 109-123. doi: 10.22059/jne.2018.24180. [in Farsi]
[22]. Mroczek-Zdyrska, M., Strubińska, J., & Hanaka, A. (2017). Selenium Improves Physiological Parameters and Alleviates Oxidative Stress in Shoots of Lead-Exposed Vicia faba L. minor Plants Grown under Phosphorus-Deficient Conditions. Journal of Plant Growth Regulation, 36, 186–199. doi: 10.1007/s00344-016-9629-7
[23]. Najafi Zilaie, M., Mosleh Arani, A., Etesami, H., & Dinarvand, M. (2022) Halotolerant rhizobacteria enhance the tolerance of the desert halophyte Nitraria schoberi to salinity and dust pollution by improving its physiological and nutritional status. Applied Soil Ecology, 179, 104578. doi: 10.1016/j.apsoil.2022.104578 [29]. [23].
[24]. Najafi Zilaie, M., Mosleh Arani, A., Etesami, H., & Dinarvand, M. (2022). Improved salinity and dust stress tolerance in the desert halophyte Haloxylon aphyllum by halotolerant plant growth-promoting rhizobacteria. Frontiers in plant science, 13, 948260. doi: 10.3389/fpls.2022.948260
[25]. Okereafor, U., Makhatha, M., Mekuto, L., Uche-Okereafor, N., Sebola, T., & Mavumengwana, V. (2020). Toxic metal implications on agricultural soils, plants, animals, aquatic life and human health. International journal of environmental research and public health, 17(7), 2204. doi: 10.3390/ijerph17072204
[26]. Pietrini, I., Grifoni, M., Franchi, E., Cardaci, A., Pedron, F., Barbafieri, M., Petruzzelli, G., & Vocciante, M. (2021). Enhanced Lead Phytoextraction by Endophytes from Indigenous Plants. Soil Systems, 5(3), 55. doi: 10.3390/soilsystems5030055
[27]. Rahmani, F., Sodaeizadeh, H., Yazdani-Biouki, R., & Kamali Aliabadi, K. (2024). Effect of bio-priming on morphological, physiological and essential oil of Chamomile (Matricaria chamomilla L.) under salinity stress. South African Journal of Botany, 167, 630-942.
[28]. Ryan, J. A., Zhang, P., Hesterberg, D., Chou, J., & Sayers, D. E. (2001). Formation of chloropyromorphite in a lead-contaminated soil amended with hydroxyapatite. Environmental science & technology, 35(18), 3798–3803. doi: 10.1021/es010634l
[29]. Saddiq, M.S., Afzal, I., Basra, S.M. A., Iqbal, S., & Ashraf, M. (2020). Sodium exclusion affects seed yield and physiological traits of wheat genotypes grown under salt stress. Soil Science and Plant Nutrition, 20, 1442–1456. doi: 10.1007/s42729-020-00224-y
 [30]. Santoyo, G., Sánchez-Yáñez, J. M., Santos-Villalobos, S. D. L. (2019). Methods for detecting biocontrol and plant growth-promoting traits in rhizobacteria. Methods in Rhizosphere Biology Research, 133–149. doi: 10.1007/978-981
[31]. Shen, X., Dai, M., Yang, J., Sun, L., Tan, X., Peng, C., Ali, I., & Naz, I. (2022). A critical review on the phytoremediation of heavy metals from environment: Performance and challenges. Chemosphere, 291(Pt 3), 132979. doi: 10.1016/j.chemosphere.2021.132979
[32]. Siddiqui, M. H., Alamri, S., Nasir Khan, M., Corpas, F. J., Al-Amri, A. A., Alsubaie, Q. D., Ali, H. M., Kalaji, H. M., & Ahmad, P. (2020). Melatonin and calcium function synergistically to promote the resilience through ROS metabolism under arsenic-induced stress. Journal of hazardous materials, 398, 122882. doi: 10.1016/j.jhazmat.2020.122882
[33]. Soleimanzadeh, H., Habibi, D., Ardakani, M.R., Paknejad, F., & Rejali, F. (2010). Effect of potassium levels on antioxidant enzymes and malondialdehyde content under drought stress in sunflower (Helianthus annuus L.). American Journal of Agricultural and Biological Sciences, 5, 56–61. doi: 10.3844/ajabssp.2010.56.61
[34]. Sun, H., Wang, X., Li, H., Bi, J., Yu, J., Liu, X., Zhou, H., & Rong, Z. (2020). Selenium modulates cadmium-induced ultrastructural and metabolic changes in cucumber seedlings. RSC advances, 10(30), 17892–17905. doi: 10.1039/d0ra02866e
[35]. Taheri Analojeh, A., Azimzadeh, H.R., Mosleh Arani, A., & Sodaiezadeh, H. (2016). Investigating and comparing short period impact of dust on physiological characteristics of three species of Pinus eldarica, Cupressus sempervirens, and Ligustrum ovalifolium. Arabian Journal of Geosciences, 9, 1-12. doi: 10.1007/s12517-015-2241-5
[36]. Walinga, I., Van Vark, W., Houba, V.J.G. & Van der lee, J.J. (1989). Plant Analysis Procedures. Department of Soil Science and Plant Nutrition, Wageningen Agricultural University, Wageningen, Syllabus Part 7, 197-200.
[37]. Wang, Q., Dodd, I. C., Belimov, A. A., & Jiang, F. (2016). Rhizosphere bacteria containing 1-aminocyclopropane-1- carboxylate deaminase increase growth and photosynthesis of pea plants under salt stress by limiting Na+ accumulation. Functional plant biology: FPB, 43(2), 161–172. doi: 10.1071/FP15200
[38]. Wagner G. J. (1979). Content and vacuole/extravacuole distribution of neutral sugars, free amino acids, and anthocyanin in protoplasts. Plant physiology, 64(1), 88–93. doi: 10.1104/pp.64.1.88
[39]. Xu, S., Zhao, N., Qin, D., Liu, S., Jiang, S., Xu, L., Sun, Z., Yan, D., & Hu, A. (2021). The synergistic effects of silicon and selenium on enhancing salt tolerance of maize plants. Environmental and Experimental Botany. 187(2), 104482. doi: 10.1016/j.envexpbot.2021.104482
[40]. Yaghmaei, L., Jafari, R., Soltani, S., Eshghizadeh, H. R., & Jahanbazy, H. (2020). Interaction Effects of Dust and Water Deficit Stresses on Growth and Physiology of Persian Oak (Quercus Brantii Lindl.). Journal of Sustainable Forestry, 41(2), 134-158. doi: 10.1080/10549811.2020.1845742
[41]. Yan, A., Wang, Y., Tan, S. N., Mohd Yusof, M. L., Ghosh, S., & Chen, Z. (2020). Phytoremediation: A promising approach for revegetation of heavy metal-polluted land. Frontiers in plant science, 11, 359. doi: 10.3389/fpls.2020.00359
[42]. Yuan, C., Gao, B., Peng, Y., Gao, X., Fan, B., & Chen, Q. (2021). A meta-analysis of heavy metal bioavailability response to biochar aging: Importance of soil and biochar properties. The Science of the total environment, 756, 144058. doi: 10.1016/j.scitotenv.2020.144058
[43]. Zhu, Y., Dong, Y., Zhu, N., & Jin, H. (2022). Foliar application of biosynthetic nano-selenium alleviates the toxicity of Cd, Pb, and Hg in Brassica chinensis by inhibiting heavy metal adsorption and improving antioxidant system in plant. Ecotoxicology and environmental safety, 240, 113681. doi: 10.1016/j.ecoenv.2022.113681