بررسی و مقایسه ویژگی‌های مورفولوژیکی و بیوشیمیایی نهال‌های یکساله چوج و کنوکارپوس تحت تنش شوری

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار دانشکده کشاورزی، دانشگاه آزاد اسلامی جهرم، جهرم، ایران

2 دانشجوی مقطع دکتری، دانشگاه آزاد اسلامی جهرم، جهرم، ایران

10.29252/aridbiom.2023.20709.1964

چکیده

مطالعه حاضر با هدف بررسی و مقایسه خصوصیات مورفولوژیکی و بیوشیمیایی گیاهان کنوکارپوس (Conocarpus erectus) و چوج (Salvadora persica) تحت تنش شوری و قابلیت جایگزینی گیاه چوج به‌جای گیاه کنوکارپوس جهت کاشت در فضای سبز انجام شد. نهال‌های کنوکارپوس و چوج 3 ماهه و یکسان از نظر مورفولوژیکی و ارتفاع تهیه گردید. تیمارهای مورد استفاده شامل سطوح شوری (شاهد یا آب شهری، ۲۵۰، ۵۰۰ و ۷۵۰ میلی مولار بر لیتر از نمک کلرید سدیم) بود که بر روی دو گیاه به‌مدت 6 ماه مورد بررسی قرار گرفت. آزمایش به‌صورت فاکتوریل بر پایه طرح کاملاً تصادفی با سه تکرار (گلدان) بود. صفات مورفولوژی (وزن‌تر و خشک برگ، وزن‌تر و خشک‌ریشه، قطر ساقه، سطح برگ)، بیوشیمیایی (کلروفیل a و b، پروتئین کل، پرولین، کربوهیدرات کل) و عناصر معدنی (سدیم، پتاسیم، کلسیم و کلر) برای هر گیاه اندازه‌گیری گردید. نتایج نشان داد که به‌جز وزن خشک برگ و وزن ‌تر و خشک‌ ریشه، سایر صفات مورفولوژی بررسی شده گیاهان چوج و کنوکارپوس تحت‌تأثیر تنش شوری قرار نگرفت. با افزایش سطوح شوری وزن خشک برگ و وزن ‌تر و خشک‌ ریشه کاهش معنی‌داری نشان داد. تنش شوری اثر معنی‌داری بر کلروفیل a، پروتئین کل، پرولین و کربوهیدرات کل نداشت، ولی کلروفیل b تحت‌تأثیر تنش شوری قرار گرفت و مقدار کلروفیل b با افزایش سطوح شوری افزایش یافت. بیشترین مقدار کلروفیل a و کربوهیدرات کل در گیاه کنوکارپوس و بیشترین مقدار کلروفیل b، پروتئین کل و پرولین در گیاه چوج به‌دست آمد. تنش شوری اثر معنی‌داری بر درصد عناصر معدنی سدیم، پتاسیم، کلسیم و کلر گیاهان چوج و کنوکارپوس نداشت. به‌طور کلی گیاه چوج که تحمل به شوری و خشکی آن بالا می‌باشد، می‌تواند جایگزین مناسبی برای گیاه کنوکارپوس جهت ایجاد پرچین، کاشت در بوستان‌ها و فضاهای سبز باشد، البته حساسیت بیشتر گونه چوج به سرما، رشد کندتر و شکل‌پذیری دشوارتر آن را باید در نظر گرفت.

کلیدواژه‌ها

موضوعات


[1]. Agrawal, N., Minj, D. K., & Rani, K. (2015). Estimation of total carbohydrate present in dry fruits. IOSR Journal of Environmental Sciennce.Toxicology and Technology Food Technology (10SR-JEESTFT), 1(6), 24-27.
[2]. Arbona, V., Manzi, M., Zandalinas, S. I., Vives-Peris, V., Pérez-Clemente, R. M., & Gómez-Cadenas, A. (2017). Physiological, metabolic, and molecular responses of plants to abiotic stress. Stress Signaling in Plants: Genomics and Proteomics Perspective, 2, 1-35. doi: 10.1007/978-3-319-42183-4_1
[3]. Asif, M., Saqib, M., Yousaf, B., Adnan, M., Yousaf, A., Ali, A., & Sabir, D. (2014). Growth and ionic composition of buttonwood (Conocarpus erectus L.) in response to soil salinity and water stress. Advances in Life Science and Tecchnology, 19, 42-51.
[4]. Bates, L. S., Waldren, R. P., & Teare, I. D. (1973). Rapid determination of free proline for water-stress studies. Plant and soil, 39, 205-207.doi: 10/1007/BF00018060
[5]. Bistgani, Z. E., Hashemi, M., DaCosta, M., Craker, L., Maggi, F., & Morshedloo, M. R. (2019). Effect of salinity stress on the physiological characteristics, phenolic compounds and antioxidant activity of Thymus vulgaris L. and Thymus daenensis Celak. Industrial Crops and Products, 135, 311-320.
[6]. Bonacina, C., da Cruz, R. M. S., Nascimento, A. B., Barbosa, L. N., Gonçalves, J. E., Gazim, Z. C., & de Souza, S. G. H. (2022). Salinity modulates growth, oxidative metabolism, and essential oil profile in Curcuma longa L.(Zingiberaceae) rhizomes. South African Journal of Botany, 146, 1-11. doi: 10.1016/j.sajb.2021.09.023
[7]. Bonacina, C., Trevizan, C. B., Stracieri, J., dos Santos, T. B., Gonçalves, J. E., Gazim, Z. C., & de Souza, S. G. H. (2017). Changes in growth, oxidative metabolism and essential oil composition of lemon balm ('Melissa officinalis' L.) subjected to salt stress. Australian Journal of Crop Science, 11(12), 1665-1674.
[8]. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical biochemistry, 72(1-2), 248-254.
[9]. Chapman, B. R., & Goldsmith, I. R. (1982). Determination of chloride, sodium and potassium in salted foodstuffs using ion-selective electrodes and the dry sample addition method. Analyst, 107(1278), 1014-1018.
[10]. Damizadeh, G., Saqib-Talebi, K., & Demizadeh, M. (2018). The effect of the canopy of Choj species (Salvadora persica) as a nurse tree in the initial establishment of forest trees and shrubs. Iranian Forestry Journal, Iranian Forestry Association, 1(1): 11-23. [in Farsi]
[11]. El-Juhany, L. I., & Aref, I. M. (2005). Interactive effects of low water supply and high salt concentration on the growth and dry matter partitioning of Conocarpus erectus seedlings. Saudi Journal of Biological Sciences, 12(2), 147-157.
[12]. Hameed, M., Ashraf, M., Ahmad, M. S. A., & Naz, N. (2010). Structural and functional adaptations in plants for salinity tolerance. Plant adaptation and phytoremediation, 151-170. doi: 10/1007/978-90-481-9370-7_8
[13]. Hegazi, A. (2010). Effect of diluted seawater irrigation and exogenous proline treatments on growth, chemical composition and anatomical characteristics of Conocarpus erectus L. Journal Agriculture Research Kafrelsheikh University, 36(4), 420-446.
[14]. Ibrahimova, U., Kumari, P., Yadav, S., Rastogi, A., Antala, M., Suleymanova, Z.,... & Brestic, M. (2021). Progress in understanding salt stress response in plants using biotechnological tools. Journal of Biotechnology, 329, 180-191.
[15]. Jackson, M. L. (1973). Soil chemical analysis, pentice hall of India Pvt. Ltd., New Delhi, India, 498, 151-154.
[16]. Jahantigh, O., Najafi, F., Badi, H. N., Khavari-Nejad, R. A., & Sanjarian, F. (2016). Changes in antioxidant enzymes activities and proline, total phenol and anthocyanine contents in Hyssopus officinalis L. plants under salt stress. Acta Biologica Hungarica, 67(2), 195-204. doi: 10/1556/018.67.2016.2.7
[17]. Joshi, R., Singla-Pareek, S. L., & Pareek, A. (2018). Engineering abiotic stress response in plants for biomass production. Journal of Biological Chemistry, 293(14), 5035-5043. doi: 10.1074/jbc.TM117.000232
[18]. Khan, A. L., Waqas, M., Asaf, S., Kamran, M., Shahzad, R., Bilal, S., Khan, M,A., Kang, S, M., Kim, Y, H., Yun, B, W., Alrawahi, A., Alharrasi, A., & Lee, I. J. (2017). Plant growth-promoting endophyte Sphingomonas sp. LK11 alleviates salinity stress in Solanum pimpinellifolium. Environmental and Experimental Botany, 133, 58-69. doi: 10.1016j.envexpbot.2016.09.009
[19]. Kishor, P. K., Sangam, S., Amrutha, R. N., Laxmi, P. S., Naidu, K. R., Rao, K. S.,... & Sreenivasulu, N. (2005). Regulation of proline biosynthesis, degradation, uptake and transport in higher plants: its implications in plant growth and abiotic stress tolerance. Current science, 88, 424-438.
[20]. Kopittke, P. M., Menzies, N. W., Wang, P., McKenna, B. A., & Lombi, E. (2019). Soil and the intensification of agriculture for global food security. Environment international, 132, 105078. doi: 10.1016j.envint.2019.105078
[21]. Liang, W., Ma, X., Wan, P., & Liu, L. (2018). Plant salt-tolerance mechanism: A review. Biochemical and biophysical research communications, 495(1), 286-291. doi: 10.1016/j.bbrc.2017.11.043
[22]. Mahouachi, J. (2018). Long-term salt stress influence on vegetative growth and foliar nutrient changes in mango (Mangifera indica L.) seedlings. Scientia Horticulturae, 234, 95-100. doi: 10.1016/j.scienta.20118.02.028
[23]. Mittler, R. (2002). Oxidative stress, antioxidants and stress tolerance. Trends in plant science, 7(9), 405-410.
[24]. Moran, R. (1982). Formulae for determination of chlorophyllous pigments extracted with N, N-dimethylformamide. Plant physiology, 69(6), 1376-1381.doi: 10.1104/pp.69.6.1376
[25]. Naveed, M., Mitter, B., Reichenauer, T. G., Wieczorek, K., & Sessitsch, A. (2014). Increased drought stress resilience of maize through endophytic colonization by Burkholderia phytofirmans PsJN and Enterobacter sp. FD17. Environmental and Experimental Botany, 97, 30-39. doi: 10.1016/j.envexpbot.2013.09.014
[26]. Papathanasiou, F., Papadopoulos, I., Tsakiris, I., & Tamoutsidis, E. (2012). Vermicompost as a soil supplement to improve growth, yield and quality of lettuce (Lactuca sativa L.). J. Food Agric. Environ, 10(2), 677-682.
[27]. Parida, A. K., & Das, A. B. (2005). Salt tolerance and salinity effects on plants: a review. Ecotoxicology and environmental safety, 60(3), 324-349. doi: 10.1016/j.ecoenv.2004.06.010
[28]. Parihar, P., Singh, S., Singh, R., Singh, V. P., & Prasad, S. M. (2015). Effect of salinity stress on plants and its tolerance strategies: a review. Environmental science and pollution research, 22, 4056-4075.
[29]. Patel, M., & Parida, A. K. (2021). Salinity alleviates the arsenic toxicity in the facultative halophyte Salvadora persica L. by the modulations of physiological, biochemical, and ROS scavenging attributes. Journal of Hazardous Materials, 401, 123368. doi: 10.1016/j.jhazmat.2020.123368
[30]. Patel, M., & Parida, A. K. (2022). Salinity mediated cross-tolerance of arsenic toxicity in the halophyte Salvadora persica L. through metabolomic dynamics and regulation of stomatal movement and photosynthesis. Environmental Pollution, 300, 118888. doi: 10.1016/j.envpol.2020.118888
[31]. Qados, A. M. S. A. (2015). Phytoremediation of Pb and Cd by native tree species grown in the Kingdom of Saudi Arabia. Agriculture and biology journal of north america, 6(1), 8-21.
[32]. Ramoliya, P. J., Patel, H. M., & Pandey, A. N. (2004). Effect of salinization of soil on growth and macro-and micro-nutrient accumulation in seedlings of Salvadora persica (Salvadoraceae). Forest ecology and management, 202(1-3), 181-193. doi: 10.1016/j.foreco.2004.07.020
[33]. Rehman, S., Abbas, G., Shahid, M., Saqib, M., Farooq, A. B. U., Hussain, M., & Farooq, A. (2019). Effect of salinity on cadmium tolerance, ionic homeostasis and oxidative stress responses in conocarpus exposed to cadmium stress: Implications for phytoremediation. Ecotoxicology and Environmental Safety, 171, 146-153. doi: 10.1016/j.ecoenv.2018.12.077
[34]. Rezazadeh, A., Fatuhi, R., Jafarian, V., & Abdoli, L. (2013). Investigating some growth and physiological indicators and enzyme activity of conocarpus plant (Conovarpus erectus L.) caused by oil effluent and calcium oxide treatments. Plant Production (Journal of Agricultural Sciences), 37(2), 63-74. [in Farsi]
[35]. Shabala, S., Shabala, S., Cuin, T. A., Pang, J., Percey, W., Chen, Z., & Wegner, L. H. (2010). Xylem ionic relations and salinity tolerance in barley. The Plant Journal, 61(5), 839-853. doi: 10.1111/j.1365-313X.2009.04110.x
[36]. Shabir, R., Abbas, G., Saqib, M., Shahid, M., Shah, G. M., Akram, M., Niazi, N. K., Naeem, M. A., Hussain, M., & Ashraf, F. (2018). Cadmium tolerance and phytoremediation potential of acacia (Acacia nilotica L.) under salinity stress. International journal of phytoremediation, 20(7), 739-746. doi: 10.1080/15226514.2017.1413339
[37]. Zhu, J., Fan, Y., Li, C., Shabala, S., Zhao, C., Hong, Y.,Lv.C.,Guo,B.,Xu,R & Zhou, M. (2020). Candidate genes for salinity tolerance in barley revealed by RNA-seq analysis of near-isogenic lines. Plant Growth Regulation, 92, 571-582. doi: 10.1007/s00425-011-1382-3