[1]. Alizadeh, T., Habashi, H., Matinizadeh, M., & Sadeghi, S. M. (2021). Investigating the enzyme activities and physicochemical properties of soil in the habitat of Prosopis cineraria (L.) Druce and P. juliflora (SW.) DC. Iranian Journal of Forest and Poplar Research, 3(1), 69-58.
[2]. Bazgir. M, Menati. T, Rostaminya, M., & Mahdavi, A. (2020). Soil microbial biomass and activity of oak forest in three different regions in Ilam province. soil biology, 2(8), 155-165. [in Farsi]
[3]. Benintende, S. M., Benintende, M. C., Sterren, M. A., & De Battista, J. J. (2008). Soil microbiological indicators of soil quality in four rice rotations systems. Ecological Indicators, 8(5), 704-708. doi: https://doi.org/10.1016/j.ecolind.2007.12.004
[4]. Carnol, M., & Bazgir, M. (2013). Nutrient return to the forest floor through litter and throughfall under 7 forest species after conversion from Norway spruce. Forest Ecology and Management, 309, 66-75. doi: https://doi.org/10.1016/j.foreco.2013.04.008
[5]. Douterelo, I., Goulder, R., & Lillie, M. (2010). Soil microbial community response to land-management and depth, related to the degradation of organic matter in English wetlands: Implications for the in situ preservation of archaeological remains. Applied Soil Ecology, 44(3), 219-227. doi: https://doi.org/10.1016/j.apsoil.2009.12.009
[6]. Fchinner, Ohlinger. R, & Kandeler. E. (2012). Methods in Soil Biology (N. A. Zadeh, Trans. R. Margesin Ed.). Tabriz-Iran: Tabriz University. [in Farsi]
[7]. Ghaderi, J., Sepehr, I., & Malakouti, M. J. (2006). Magnazium. In M. J. Malakouti & P.Keshavarz (Eds.), A look at the fertility status of Irainian Soils (pp. 503). Iran: Sana. [in Farsi]
[8]. Habashi, H. (2015). Microbial respiration and microbial biomass C relationship with soil organic matter in different types of mixed beech forest. Forest Research and Development, 1(2), 135-144. [in Farsi]
[9]. Haghverdi, K. (2017). The effect of tree covers on soil microbiological indices and CO2 emission. Water and Soil Conservation, 24(4), 81-63. [in Farsi]
[10]. Haidari, M., Teimouri, M., Pourhashemi, M., & Alizadeh, T. (2023). Study Changes in Biological Indicators in Forest Stands with Different Structure in Kurdistan Province. Ecology of Iranian Forests, 20, 9. [in Farsi]
[11]. Harron, W. R. A., Webster, G. R., & Cairns, R. R. (1983). Relationship between exchangeable sodium and sodium adsorption ratio in a soloneztic soil. Canadian Journal of Soil Science, 63(3), 461-467. doi:10.4141/cjss83-047
[12]. Huang, L., Hu, H., Bao, W., Hu, B., Liu, J., & Li, F. (2023). Shifting soil nutrient stoichiometry with soil of variable rock fragment contents and different vegetation types. Catena, 220. doi:10.1016/j.catena.2022.106717
[13]. Jones, G. L., Scullion, J., Worgan, H., & Gwynn-Jones, D. (2019). Litter of the invasive shrub Rhododendron ponticum (Ericaceae) modifies the decomposition rate of native UK woodland litter. Ecological Indicators, 107, 105597. doi: https://doi.org/10.1016/j.ecolind.2019.105597
[14]. Kalantari, K. (2003). Data Processing and analysis in Socio-Economic Research: Sharif.
[15]. Li, C., Zhao, L., Sun, P., Zhao, F., Kang, D., Yang, G., ... Ren, G. (2016). Deep Soil C, N, and P Stocks and Stoichiometry in Response to Land Use Patterns in the Loess Hilly Region of China. PLOS ONE, 11(7), e0159075. doi:10.1371/journal.pone.0159075
[16]. Limbu, D., Koirala, M., Shang, Z., & Associate, C. (2020). Soil Microbial Biomass Carbon and Nitrogen in Himalayan Rangeland of Eastern Nepal: A Comparison between Grazed and Non-grazed Rangelands. The Rangeland Journal, 10, 217-227.
[17]. Liu, X., Ma, J., Ma, Z.-W., & Li, L.-H. (2017). Soil nutrient contents and stoichiometry as affected by land-use in an agro-pastoral region of northwest China. Catena, 150, 146-153. doi: https://doi.org/10.1016/j.catena.2016.11.020
[18]. Lu, X., Toda, H., Ding, F., Fang, S., Yang, W., & Xu, H. (2014). Effect of vegetation types on chemical and biological properties of soils of karst ecosystems. European Journal of Soil Biology, 61, 49-57. doi:10.1016/j.ejsobi.2013.12.007
[19]. Memoli, V., Santorufo, L., Santini, G., Ruggiero, A. G., Giarra, A., Ranieri, P., ... Maisto, G. (2022). The combined role of plant cover and fire occurrence on soil properties reveals response to wildfire in the Mediterranean basin. European Journal of Soil Biology, 112, 103430. doi: https://doi.org/10.1016/j.ejsobi.2022.103430
[20]. Moazami Goodarzi. H, Jalili, B., Sepanlou, M. G., & Salek-Gilani, S. (2022). Effects of deforestation and land uses on some chemical and microbial properties of soil in northern Iran (a case study: Salim Sheykh area of Sari). Soil biology, 9(2), 123-139. [in Farsi].
[21]. Özkan, U., & Gökbulak, F. (2017). Effect of vegetation change from forest to herbaceous vegetation cover on soil moisture and temperature regimes and soil water chemistry. Catena, 149, 158-166. doi: https://doi.org/10.1016/j.catena.2016.09.017
[22]. Phillips, C.L. and N. Nickerson, Soil Respiration, in Reference Module in Earth Systems and Environmental Sciences. 2015, Elsevier.
[23]. Rezaei, H. (2006). Phosphor. In M. J. Malakouti & P.Keshavarz (Eds.), A look at the fertility status of irainian soils. Tehran: Sana. [in Farsi]
[24]. Shinberg, I., & Oster, J. D. (1998). Quality of Irrigation Water (A. Alizadeh, Trans. fivth ed.). Mashhad, Iran: Ghods. [in Farsi]
[25]. Sun, G., Li, W., Zhu, C., & Chen, Y. (2017). Spatial variability of soil carbon to nitrogen ratio and its driving factors in Ili River valley, Xinjiang, Northwest China. Chinese Geographical Science, 27(4), 529-538. doi:10.1007/s11769-017-0885-7
[26]. Tan, K. H. 2005. Soil Sampling, Preparation, and Analysis, CRC Press
[27]. Vanhala, P., Kiikkilä, O., & Fritze, H. (1996). Microbial responses of forest soil to moderate anthropogenic air pollution. Water, Air, and Soil Pollution, 86(1), 173-186. doi:10.1007/BF00279154
[28]. Wang, C., Li, L., Yan, Y., Cai, Y., Xu, D., Wang, X., ... Xin, X. (2021). Effects of cultivation and agricultural abandonment on soil carbon, nitrogen and phosphorus in a meadow steppe in eastern Inner Mongolia. Agriculture Ecosystems & Environment, 309, 107284.
[29]. Winding, A., Hund-Rinke, K., & Rutgers, M. (2005). The use of microorganisms in ecological soil classification and assessment concepts. Ecotoxicology and Environmental Safety, 62(2), 230-248. doi: https://doi.org/10.1016/j.ecoenv.2005.03.026
[30]. Xiao, R., Man, X., Duan, B., Cai, T., Ge, Z., Li, X., & Vesala, T. (2022). Changes in soil bacterial communities and nitrogen mineralization with understory vegetation in boreal larch forests. Soil Biology and Biochemistry, 166. doi:10.1016/j.soilbio.2022.108572
[31]. Yuan, B.-C., & Yue, D.-X. (2012). Soil Microbial and Enzymatic Activities across a Chronosequence of Chinese Pine Plantation Development on the Loess Plateau of China. Pedosphere, 22(1), 1-12. doi: https://doi.org/10.1016/S1002-0160(11)60186-0
[32]. Zandi, l., Erfanzadeh, R., & Joneidi, H. (2020). The effect of introduced Species on rangelands soil quality with emphasizing on Microbial Respiration. Rangeland, 14(1), 1-1. [in Farsi]
[33]. Zarrinkafsh, M. (1993). Applied soil science. Tehran-Iran: Tehran University.
[34]. Zhao, Y., Zhao, M., Qi, L., Zhao, C., Zhang, W., Zhang, Y., ... Yuan, J. (2022). Coupled Relationship between Soil Physicochemical Properties and Plant Diversity in the Process of Vegetation Restoration. Forests, 13(5). doi:10.3390/f13050648
[35]. Zheng, X., Lin, C., Guo, B., Yu, J., Ding, H., Peng, S., ... Zhang, Y. (2020). Effects of re-vegetation restoration on soil bacterial community structure in degraded land in subtropical China. European Journal of Soil Biology, 98. doi:10.1016/j.ejsobi.2020.103184
[36]. Zhou, Z., Hua, J., & Xue, J. (2022). Salinity drives shifts in soil microbial community composition and network complexity along vegetation community succession in coastal tidal flats. Estuarine, Coastal and Shelf Science, 276. doi:10.1016/j.ecss.2022.108005.