بررسی تغییرات ویژگی‌های شیمیایی خاک در ناحیه ریشه گیاه قیچ (Zygophyllum eurypterum)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه علوم خاک، دانشکده کشاورزی، دانشگاه شیراز، شیراز، ایران

2 گروه مهندسی محیط زیست و منابع طبیعی، دانشکده کشاورزی، دانشگاه شیراز، شیراز، ایران

10.29252/aridbiom.2023.19981.1931

چکیده

نخستین گام انجام برنامه­‌های اصلاح، احیاء یا بهره‌­برداری از منابع طبیعی، شناخت پوشش گیاهی مناطق مختلف کشور است. رابطة متقابلی بین خاک و پوشش گیاهی وجود دارد. خاک‌­ها یکی از مهم‌­ترین عوامل مؤثر بر رشد و پراکنش جغرافیایی گونه­‌های گیاهی هستند. استان فارس دارای رویشگاه‌­های متعدد مرتعی و جنگلی است و می­‌تواند به عنوان یک قطب تحقیقاتی برای انتخاب و معرفی گونه­‌های گیاهی مناسب و سازگار با شرایط سخت بوم‌شناختی و ویژگی­‌های خاک­‌های کشور مورد استفاده قرار گیرد. هدف از این تحقیق، بررسی اثرات گونه گیاهی قیچ بر برخی از ویژگی­‌های شیمیایی خاک­‌های رویشگاه آن در آباده، سروستان و خنج فارس بود. این مطالعه با استفاده از طرح فاکتوریل 2×2×3 (سه منطقه، دو عمق و دو فاصله) و در قالب طرح کاملاً تصادفی و سه تکرار انجام گرفت. نمونه‌­های خاک از دو نیمرخ واقع در فاصله‌های سایه‫‌انداز و خارج از سایه‫‌انداز، از دو عمق 20-0 و 40-20 سانتیمتر خاک در سه منطقه مورد اشاره برداشت شد. ویژگی­‌های شیمیایی خاک‌­ها اندازه­‌گیری شد. نتایج نشان داد که تفاوت معنی‫‌داری در pH، هدایت الکتریکی، غلظت آنیون‌­های محلول (کلر، بیکربنات و سولفات)، نسبت جذبی سدیم، مادة آلی و ظرفیت تبادل کاتیونی بین مناطق، عمق‌های مختلف و فاصله سایه‌­انداز و خارج سایه‌­انداز وجود دارد. کربنات کلسیم معادل در منطقه و عمق تفاوت معنی­‌دار و در فاصله سایه­‌انداز و خارج سایه‌­انداز تفاوت معنی­داری نداشت. افزایش قابلیت هدایت الکتریکی خاک سطحی، واقع در زیر سایه‌انداز گیاه قیچ سبب تغییر خاک رویشگاه خود به سمت یک خاک شور شده است. با وجود افزایش نسبت جذب سدیم در زیر سایه‌انداز، مقادیر به دست آمده تهدیدی در ارتباط با خطرات یون سدیم را نشان نمی‌دهد. گیاه قیچ مقدار بالای انباشت سدیم در اندام هوایی نشان داد. با توجه به این آثار، نقش مهم پوشش گیاهی قیچ در تغییر ویژگی­‌های خاک سطحی مشخص می­‌گردد.

کلیدواژه‌ها


[1]. Ahmadi, A., Toranjzar, H., & Gomarian, M. (2018). Studying the effect of white saxaul (Haloxylon persicum) and fourwing saltbush (Atriplex canescens) plantation on soil physico-chemical properties in rangelands of Mallard-Zarandiyeh. Journal of Plant Ecophysiology10(32), 225-235. [in Farsi]
[2]. Amirian, H., Payamenoor, V., & Akbarloo, M. (2021). Introduction of the most Salt Tolerant Plants and their Reproduction Methods in the Turkmensahra Region. Human & Environment, 19(2), 91-104.
[3]. Arias, D., Calvo-Alvarado, J., & Dohrenbusch, A. (2007). Calibration of LAI-2000 to estimate leaf area index (LAI) and assessment of its relationship with stand productivity in six native and introduced tree species in Costa Rica. Forest Ecology and management, 247(1-3), 185-193.
[4]. Azadi, A., Ronaghi, A., Ahmadi, Z., Sadri, M., Asadi, Z., & Heidari, S. (2020). Influence of Salinity and Supplementary Calcium on Growth, Concentration of Some Nutrients and Quality of Tomato Fruit under Hydroponic Conditions. Journal of Environmental Science and Technology, 22(8), 1-13. [in Farsi]
[5]. Belsky, A. J., & Canham, C. D. (1994). Forest gaps and isolated savanna trees. BioScience, 44(2), 77-84.                        http://doi.org/10.2307/1312205.
[6]. Blum, S. C., Lehmann, J., Solomon, D., Caires, E. F., & Alleoni, L. R. F. (2013). Sulfur forms in organic substrates affecting S mineralization in soil. Geoderma, 200, 156-164. https://doi.org/10.1016/j.geoderma.2013.02.003.
[7]. Chandler, K. R., & Chappell, N. A. (2008). Influence of individual oak (Quercus robur) trees on saturated hydraulic conductivity. Forest Ecology and Management, 256(5), 1222-1229. https://doi.org/10.1016/j.foreco.2008.06.033.
[8]. Chhabra, R., & Abrol, I. P. (1977). Reclaiming effect of rice grown in sodic soils. Soil Science, 124(1), 49-55.
[9]. Everett, R., Sharrow, S., & Thran, D. (1986). Soil nutrient distribution under and adjacent to singleleaf pinyon crowns. Soil Science Society of America Journal, 50(3), 788-792.  https://doi.org/10.2136/sssaj1986.03615995005000030044x.
[10]. Eviner, V. T., & Chapin III, F. S. (2003). Functional matrix: a conceptual framework for predicting multiple plant effects on ecosystem processes. Annual Review of Ecology, Evolution, & Systematics, 34(1), 455-485.
[11]. Fageria, N. K., Baligar, V. C., & Jones, C. A. (2010). Growth and mineral nutrition of field crops. Boka Roton: CRC press.
[12]. Fallah shojaei. J. (2007). The effect of some species of acacia plant on the characteristics of the soil inside and outside their shade. 9th Soil Science Congress of Iran. [in Farsi]
[13]. Farhadifar, A., Dianati Tilaki, G. A., & Kooch, Y. (2021). The effects of forest and rangelands covers on accumulation of soil nutrient elements in Kojour region. Journal of Plant Research (Iranian Journal of Biology), 34(3), 632-642. [in Farsi]
[14]. Gharehsheikhloo, A. H., Vahabi, M. R., & Karimzadeh, H. R. (2010). Comparison of soil characteristics of land with/without vegetation in Dagh-e-Sorkh Ardestan catchment. Journal of Science and Technology of Agriculture and Natural Resources, 14(53 (B)), 89-97.
[15]. Ghasemi, N. (2011). The effect of Atriplex and Tag plant species on the physical and chemical properties of their habitat soils in Tem Shuli area of Niriz city. 11th Soil Science Congress of Iran.
[16]. Ghasemi-Fasaei, R., Keshavarz, S., & Bolhasani, Z. (2019). Influence of Alhagi camelorum and Peganum harmala Canopies on the Redistribution of Chemical form of Zinc in two Areas of Bajgah and Chahtiz in Fars province. Desert Ecosystem Engineering Journal, 8(22), 59-72. [in Farsi]
[17]. Jahanbin, R., Jahantab, E., Alirezanezhad, A., Javdani, Z., & Mirzaee, M. R. (2013). The effects of shrubs common myrtle (Myrtus communis) on soil chemical and physical characteristics of basht area. Annals of Biological Research, 4(5), 158-164.
[18]. Knudsen, D., Peterson, G. A., & Pratt, P. F. (1982). Lithium, sodium and potassium. In A. L. Page (ed.). Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties, 2nd ed. (pp 225-246). Madison: American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. https://doi.org/10.2134/agronmonogr9.2.2ed.c13
[19]. Loeppert, R. H., & Suarez, D. L. (1996). Carbonate and gypsum. In D. L. Sparks (eds). Methods of Soil Analysis. Part 3. Chemical Methods 3rd ed. (pp. 437-474). Madison: American Society of Agronomy, Crop Science Society of America, and Soil Science. https://doi.org/10.2136/sssabookser5.3.c15.
[20]. Liu, X., Luo, Y., Cheng, L., Hu, H., Wang, Y., & Du, Z. (2021). Effect of Root and Mycelia on Fine Root Decomposition and Release of Carbon and Nitrogen under Artemisia halodendron in a Semi-arid Sandy Grassland in China. Frontiers in plant science, 12. 698054. https://doi.org/10.3389/fpls.2021.698054
[21]. Mina, M., Rezaei, M., Sameni, A., Ostovari, Y., & Ritsema, C. (2022). Predicting wind erosion rate using portable wind tunnel combined with machine learning algorithms in calcareous soils, southern Iran. Journal of Environmental Management, 304, 114171. https://doi.org/10.1016/j.jenvman.2021.114171.
[22]. Mishra, A., Sharma, S. D., & Khan, G. H. (2003). Improvement in physical and chemical properties of sodic soil by 3, 6 and 9 years old plantation of Eucalyptus tereticornis: Biorejuvenation of sodic soil. Forest Ecology and Management, 184(1-3), 115-124. https://doi.org/10.1016/S0378-1127(03)00213-5.
[23]. Mohammadi Samani, K., Hosseini, V., & Rostami, H. (2022). Physical and chemical properties of soil in sacred groves and surrounding oak woodlands in Baneh County. Forest and Wood Products, 74(4), 383-394. https://doi.org/10.22059/JFWP.2021.317825.1154. [in Farsi]
[24]. Mousavi Kouhi, S.M., Moudi, M. Soltani Moghadam, E., & Sarchahi Moghadam, H. (2019). The investigating of sodium accumulation in some halophytic species of Zygophyllaceae, Polygonaceae, Asteraceae and Amaranthaceae. –Nova Biologica Reperta 6(1): 96-105.                https://doi.org/10.29252/nbr.6.1.96. [in Farsi]
[25]. Mugunga, C. P., & Mugumo, D. T. (2013). Acacia sieberiana effects on soil properties and plant diversity in Songa pastures, Rwanda. International Journal of Biodiversity, 2013, 1-11.
[26]. Nan, J., Chao, L., Ma, X., Xu, D., Mo, L., Zhang, X., ... & Bao, Y. (2020). Microbial diversity in the rhizosphere soils of three Stipa species from the eastern Inner Mongolian grasslands. Global Ecology & Conservation, 22, e00992. https://doi.org/10.1016/j.gecco.2020.e00992.
[27]. Narayan, O. P., Kumar, P., Yadav, B., Dua, M., & Johri, A. K. (2022). Sulfur nutrition and its role in plant growth and development. Plant Signaling & Behavior, 2030082. https://doi.org/10.1080/15592324.2022.2030082
[28]. Nelson, D. W., & Sommers, L. E. (1996). Total carbon, organic carbon and organic matter. In D. L. Sparks et al., (eds). Methods of Soil Analysis. Part 3. Chemical Methods 3rd ed. (pp 961- 1010). Madison:  American Society of Agronomy, https://doi.org/10.2134/agronmonogr9.2.2ed.c29.
[29]. Northup, R. R., Dahlgren, R. A., & McColl, J. G. (1998). Polyphenols as regulators of plant-litter-soil interactions in northern California’s pygmy forest: a positive feedback? In Plant-induced soil changes: Processes and feedbacks (pp. 189-220). Dordrecht: Springer.
[30]. Owliaie, H. R., Adhami, E., Faraji, H., & Fayyaz, P. (2011). Influence of Oak (Quercus brantii Lindl.) on selected soil properties of oak forests in Yasouj Region. Journal of Waterand Soil Science -Isfahan University of Technology, 15(56), 193-207. https://doi.org/20.1001.1.24763594.1390.15.56.15.5. [in Farsi]
[31]. Pal, R. C., & Sharma, A. (2001). Afforestation for reclaiming degraded village common land: a case study. Biomass and Bioenergy, 21(1), 35-42. https://doi.org/10.1016/S0961-9534(01)00015-0.
[32]. Panahande, M., Morovati, M., Ravanbakhsh, M., & Javan, S. (2019). A review on the identification and assessment of the aggressive plant species environmental hazard in water ecosystems (case study: Water hyacinth). Human & Environment, 17(1), 79-91. https://doi.org/20.1001.1.15625532.1398.17.1.7.5.
[33]. Poschenrieder, C., Fernández, J. A., Rubio, L., Pérez, L., Terés, J., & Barceló, J. (2018). Transport and use of bicarbonate in plants: current knowledge and challenges ahead. International Journal of Molecular Sciences, 19(5), 1352. https://doi.org/10.3390/ijms19051352.
[34]. Ramos, F. T., Dores, E. F. D. C., Weber, O. L. D. S., Beber, D. C., Campelo Jr, J. H., & Maia, J. C. D. S. (2018). Soil organic matter doubles the cation exchange capacity of tropical soil under no‐till farming in Brazil. Journal of the Science of Food and Agriculture, 98(9), 3595-3602. https://doi.org/10.1002/jsfa.8881
[35]. Raven, J. A. (2017). Chloride: essential micronutrient and multifunctional beneficial ion. Journal of Experimental Botany, 68(3), 359-367. https://doi.org/10.1093/jxb/erw421.
[36]. Rhoades, J. D. (1996). Salinity: Electrical conductivity and total dissolved salts. In D.L. Sparks et al., (eds). Methods of Soil Analysis. Part 3. Chemical Methods 3rd ed. (pp 417-436). Madison: American Society of Agronomy. https://doi.org/10.2136/sssabookser5.3.c14.
[37]. Richards, L. A. (1954). Diagnosis and improvement of saline and alkali soils.  United State Salinity Laboratory Staff. USDA. Hand book (60). Washington, DC.
[38]. Rouhi Moghaddam, E., Heidari Sadegh, A., Fakhireh, A., Noori Kia, Z., & Noori, S. (2018). Impact of Tamarix aphylla and Atriplex canescens plantations on some Physico-chemical properties of the soil in Zahak region, Sistan. Natural Ecosystems of Iran, 8(4), 1-14. [in Farsi]
[39]. Saghari, M., & Foroughifar, H. (2007). Study On the Effects of Atriplex Canescens Planting on the Chemical Charesteristics Changes of Pasture Soil in Birjand Area. Pajouhesh and Sazandegi. 19(3), 157-160. [in Farsi]
[40]. Sauze, J., Jones, S. P., Wingate, L., Wohl, S., & Ogée, J. (2018). The role of soil pH on soil carbonic anhydrase activity. Biogeosciences, 15(2), 597-612. https://doi.org/10.5194/bg-15-597-2018.
[41]. Skandari, F., Basiri, R., & Moradi, M. (2020). Effect of Quercus brantii Lindl and Cupresss sempervirens L. var. horizontahis on soil physical and chemical properties in Kohgiluyeh and boyerahmad. Journal of Plant Research (Iranian Journal of Biology), 33(4), 894-906. https://doi.org/ 20.1001.1.23832592.1399.33.4.12.8. (in Farsi).
[42]. Smith, J. L., Halvorson, J. J., & Bolton Jr, H. (1994). Spatial relationships of soil microbial biomass and C and N mineralization in a semi-arid shrub-steppe ecosystem. Soil Biology and Biochemistry, 26(9), 1151-1159. https://doi.org/10.1016/0038-0717(94)90137-6.
[43]. Summer, M. E., & Miller, W. P. (1996). Cation exchange capacity and exchange coefficients. In D. L. Sparks et al. (eds). Methods of Soil Analysis. Part 3. Chemical Methods, 3 nd ed.  (pp 1201-1229). Madison: American Society of Agronomy, https://doi.org/10.2136/sssabookser5.3.c40.
[44]. Tahan, A., & Sabri, E. (2015). Evaluation of some soils chemical and physical properties in two rangel and sites (case study: summer rangel and of agh dash-shahindej county, western Azerbaijan province). Renewable natural resources research journal, 6(2): 55-64.
[45]. Tajolldini. F. (2011). The effect of species of sedge and sedge on the availability of nutrients and the amount of organic matter in the soil of their habitat. 11th Soil Science Congress of Iran.
[46]. Tasisa, B. Y., & Nemomissa, S. (2019). Patch enclosure and localized effects of selected Acacia species on herbaceous richness and soil properties of rangelands in Somali regional state in Ethiopia. Journal of Rangeland Science, 9(4), 319-332.
[47]. Thammanu, S., Marod, D., Han, H., Bhusal, N., Asanok, L., Ketdee, P., & Chung, J. (2021). The influence of environmental factors on species composition and distribution in a community forest in Northern Thailand. Journal of Forestry Research, 32(2), 649-662.
[48]. Thomas, G. W. (1996). Soil pH and soil acidity. In Methods of soil analysis: part 3 chemical methods, 3 nd ed. (pp 475-490). Madison: American Society of Agronomy, https://doi.org/10.2136/sssabookser5.3.c16.
[49]. Tilk, M., Tullus, T., & Ots, K. (2017). Effects of environmental factors on the species richness, composition and community horizontal structure of vascular plants in Scots pine forests on fixed sand dunes. Silva Fennica, 51(3).  https://doi.org/10.14214/sf.6986.
[50]. Wang, Z., Yuan, X., Wang, D., Zhang, Y., Zhong, Z., Guo, Q., & Feng, C. (2018). Large herbivores influence plant litter decomposition by altering soil properties and plant quality in a meadow steppe. Scientific reports, 8(1), 1-12, https://doi.org/10.1038/s41598-018-26835-1
[51]. Zhang, C., Li, X., Chen, L., Xie, G., Liu, C., & Pei, S. (2016). Effects of topographical and edaphic factors on tree community structure and diversity of subtropical mountain forests in the Lower Lancang River Basin. Forests, 7(10), 222, https://doi.org/10.3390/f7100222
[52]. Zheng, J., He, M., Li, X., Chen, Y., & Liu, L. (2008). Effects of Salsola passerina shrub patches on the microscale heterogeneity of soil in a montane grassland, China. Journal of arid environments, 72(3), 150-1, https://doi.org/10.1016/j.jaridenv.2007.05.010
[53]. Zrafiee, M., Maddah, H. S., Hamidpour, M., & Mohammadi, M. A. (2019). Investigation on interaction of sodium chloride and cadmium on some physiological characteristics and Na and Cd uptake in roots and shoots of purslane (Portulaca oleraceae L.), Journal of Soil Management and Sustainable Production, 8(4), 43-60. [in Farsi]