[1]. Behbood, V., Lu, J., & Zhang, G. (2010). Adaptive Inference-based learning and rule generation algorithms in fuzzy neural network for failure prediction. In 2010 IEEE International Conference on Intelligent Systems and Knowledge Engineering, pp. 33-38.
[2]. Cucchiella, F., D’Adamo, I., & Gastaldi, M. (2013). Italian energy portfolio analysis: an interactive renewable investments tool. Advanced Materials Research, 739, 768-776.
[3]. Hocine, A., Kouaissah, N., Bettahar, S., & Benbouziane, M. (2018). Optimizing renewable energy portfolios.
[4]. Houshmandynia, S., Hamdi, K., Mohebi, S., & Zamanimoghadam, A. (2022). Providing a Model of Effective Components for the Renewable Energy Business Model (By Predicting the Status of Renewable Energy in Iran and the World by 2030). Jounal of Marketing Management, 17(57), 27-49. [in Farsi]
[5]. Idrus, A., Nuruddin, M. F., & Rohman, M. A. (2011). Development of project cost contingency estimation model using risk analysis and fuzzy expert system. Expert Systems with Applications, 38(3), 1501-1508.
[6]. IRENA, I. (2019). Renewable energy and jobs: Annual review 2019. International Renewable Energy Agency (IRENA), United Arab Emirates.
[7]. Manzano-Agugliaro, F., Alcayde, A., Montoya, F. G., Zapata-Sierra, A., & Gil, C. (2013). Scientific production of renewable energies worldwide: An overview. Renewable and Sustainable Energy Reviews, 18, 134-143.
[8]. Mroue, A. M., Mohtar, R. H., Pistikopoulos, E. N., & Holtzapple, M. T. (2019). Energy Portfolio Assessment Tool (EPAT): Sustainable energy planning using the WEF nexus approach–Texas case. Science of The Total Environment, 648, 1649-1664.
[9]. Nouri, E., & Nouri, M. (2014). Bazaar as a context for clean energy policies, opportunities and threats, the first national conference on civil engineering, architecture and sustainable development, Yazd, Yazd Payam Noor University. [in Farsi]
[10]. Osamu, I., Takashi, O., Izumi, K., & Hiroshi, M. (2005). Current status and future prospect of PV development in Japan: beyond 1GW of PV installed capacity. Proceedings of the 20th European photovoltaic solar energy conference and exhibition, Barcelona.
[11]. Rabbani, M., Mamaghani, M. G., Farshbaf-Geranmayeh, A., & Mirzayi, M. (2016). A Novel Mixed Integer Programming Formulation for Selecting the Best Renewable Energies to Invest: A Fuzzy Goal Programming Approach. International Journal of Operations Research and Information Systems (IJORIS), 7(3), 1-22.
[12]. Scala, A., Facchini, A., Perna, U., & Basosi, R. (2019). Portfolio analysis and geographical allocation of renewable sources: A stochastic approach. Energy Policy, 125, 154-159.
[13]. Waqif Kodhi, A. (2015). Strategic policy making in renewable energy for sustainable development The 5th Conference on New Energy and Distributed Production of Iran.
[14]. Yel, E., & Yalpir, S. (2011). Prediction of primary treatment effluent parameters by Fuzzy Inference System (FIS) approach. Procedia computer science, 3, 659-665.
[15]. Yuregir, O. H., & Sagiroglu, C. (2016). Solar energy validation for strategic investment planning via comparative data mining methods: an expanded example within the cities of Turkey. International Journal of Photoenergy, 2016, 1-16.
[16]. Zargar, B., Emami Meibodi, A., Jahangirnia, H., & Safa, M. (2020). A Financing Model of Photovoltaic Industry in Iran: Combination of Grounded Theory and Neural NetworksModel. Iranian Energy Economics, 10(37), 73-97. doi: 10.22054/jiee.2022.63746.1867. [in Farsi]
[17]. Zhang, M., Tang, Y., Liu, L., & Zhou, D. (2022). Optimal investment portfolio strategies for power enterprises under multi-policy scenarios of renewable energy. Renewable and Sustainable Energy Reviews, 154, 111879.
[18]. Zhuang, Z. Y., Hocine, A., Kouaissah, N., & Kiker, G. A. (2023). Optimising sustainable renewable energy portfolios using a multi-tolerance fuzzy goal programming approach. International Journal of Green Energy, 20(6), 640-655.