تأثیر تغییر کاربری اراضی بر فرسایش خاک با استفاده از GIS و سنجش از دور بر مبنای مدل RUSLE (مطالعه موردی: شهرستان بهبهان)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی‌ارشد مهندسی آبخیزداری، دانشگاه صنعتی خاتم‌الانبیاء بهبهان، بهبهان، ایران

2 استادیار گروه مرتع و آبخیزداری، دانشگاه صنعتی خاتم‌الانبیاء بهبهان، بهبهان، ایران

3 دانش‌آموخته دکتری علوم و مهندسی آبخیزداری، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ساری، ایران

10.29252/aridbiom.2023.19670.1924

چکیده

فرسایش خاک یک خطر طبیعی و جهانی است که بطور جدی منابع آب و خاک را تهدید می‌کند. یکی از مهم‌ترین عوامل مؤثر در تشدید فرسایش خاک، تغییرات کاربری اراضی ناشی از فعالیت‌های بشری است. در این مطالعه تأثیر تغییر کاربری اراضی در فرسایش خاک شهرستان بهبهان با استفاده از مدل معادله جهانی اصلاح شده فرسایش خاک (RUSLE) در محیط سامانه اطلاعات جغرافیایی (GIS) مورد بررسی قرار گرفت. برای استخراج نقشه نهایی فرسایش خاک، ابتدا عامل‌های مدل RUSLE شامل R، K، L، S، C و P برای دو سال 2000 و 2021 میلادی تهیه شد، سپس این مؤلفه‌ها به صورت نقشه‌هایی به فرمت GRID تبدیل و با حاصلضرب همة این مؤلفه‌ها در سطح پیکسل، میزان فرسایش خاک در سطح منطقه بدست آمد. نتایج نقشه فرسایش در دو سال 2000 و 2021 نشان داد که میزان فرسایش خاک با گذر زمان بیشتر شده است. در سال 2021 بیشترین مقدار فرسایش با استفاده از پیش‌بینی مدل RUSLE، منحصر به آبراهه‌ها و رودخانه‌هاست هرچند که فرسایش در کل منطقه به اشکال مختلف وجود دارد. همچنین بیشترین مساحت منطقه در طبقه خطر فرسایش کم قرار دارد که بایستی این مسأله را در برنامه‌ریزی‌ها مدنظر داشت. در بین عامل‌های مؤثر در فرسایش، عامل فرسایندگی باران در بخش‌های شمالی منطقه بالادست زیاد بوده است. نقشه‌های کاربری اراضی نیز نشان از کاهش پوشش گیاهی سطح زمین می‌دهد که باعث تغییر در میزان مؤلفه‌های مؤثر در مدل شده و میزان فرسایش در منطقه را تحت تأثیر قرار می‌دهد. مساحت پوشش گیاهی در بین سال‌های 2000 تا 2021 کاهش یافته است و به مساحت مناطق مسکونی و اراضی زراعی افزوده شده است. نتیجه این تغییرات موجب کاهش پوشش طبیعی سطح خاک شده و در نتیجه شرایط برای وقوع فرسایش خاک ناشی از برخورد قطرات باران افزایش یافته است.

کلیدواژه‌ها


[1]. Abdoalmohamdi, S., Ildoromi, A., & Heshmati, M.  (2021). The Effect of Land Use Change on Some Physical and Chemical Properties of Soil in the Halshi Watershed, Kermanshah. Journal of Geography and Planning, 25(75), 171-180. (in Farsi).
[2]. Abiyat, M., Abiyat, M., & Abiyat, M. (2021). Investigation of Land-Use Changes and their Impacts on Soil Erosion in Baghmalek Basin using Artificial Neural Network and RUSLE Model. Journal of Environmental Studies, 47(1), 89-110. (in Farsi).
[3]. Ahmadi, M., Minaei, M., Ebrahimi, O., & Nikseresht, M. (2020). Evaluation of WEPP and EPM for improved predictions of soil erosion in mountainous watersheds: A case study of Kangir River basin, Iran. Modeling Earth Systems and Environment, 6, 2303-2315.
[4]. Amanpour, S., Abiyat, M., abiyat, M., & Abiyat, M. (2021). Investigation of the Effect of Land Use Change on Soil Erosion and Sediment Production in Ramhormoz Basin Using Object-Oriented Classification and RUSLE Model. Iranian Journal of Soil and Water Research, 52(3), 635-649. (in Farsi).
[5]. Anderson, G. L., Hanson, J. D., & Haas, R. H. (1993). Evaluating Landsat Thematic Mapper derived vegetation indices for estimating above-ground biomass on semiarid rangelands. Remote sensing of environment, 45(2), 165-175.
[6]. Aneseyee, A. B., Elias, E., Soromessa, T., & Feyisa, G. L. (2020). Land use/land cover change effect on soil erosion and sediment delivery in the Winike watershed, Omo Gibe Basin, Ethiopia. Science of the Total Environment, 728, 138776.
[7]. Bai, L., Wang, N., Jiao, J., Chen, Y., Tang, B., Wang, H., & Wang, Z. (2020). Soil erosion and sediment interception by check dams in a watershed for an extreme rainstorm on the Loess Plateau, China. International Journal of Sediment Research, 4(35): 408-416.
[8]. Bewket, W., & Teferi, E. (2009). Assessment of soil erosion hazard and prioritization for treatment at the watershed level: case study in the Chemoga watershed, Blue Nile basin, Ethiopia. Land Degradation & Development, 20(6), 609-622.
[9]. Dasti, A., Ansari, M.R., Zoratipour, A. & Naserin, A. (2019). Water erosion, flooding and soil and water protection - investigation of the relationship between drainage density and specific soil erosion intensity in the watershed (case study: Zard River watershed, Khuzestan province). The 16th Congress of Soil Sciences of Iran. 10(2), 15-22. (in Farsi).
[10]. Erkossa, T. , Wudneh, A. , Desalegn, B. , Taye, G. , 2015. Linking soil erosion to on-site fi- nancial cost: lessons from watersheds in the Blue Nile basin. Solid Earth, 6, 765-774.
[11]. Foster, G.R. & Wischmeier, W. (1974). Evaluating irregular slopes for soil loss prediction. Transactions of the ASAE, 17(2), 305-0309.
[12]. Ghahremannejad, E., Nazarnejad, H. & Miryaghubzadeh, M. (2018). Effect of different land- use management scenarios on soil erosion using USLE model in Kalaybarchay watershed. Journal of Water and Soil Resources Conservation, 7(2), 94-104. (in Farsi).
[13]. Gopalakrishnan, T., & Kumar, L. (2021). Linking long-term changes in soil salinity to paddy land abandonment in Jaffna Peninsula, Sri Lanka. Agriculture, 11(3), 211.
[14]. Haregeweyn, N., Tsunekawa, A., Poesen, J., Tsubo, M., Meshesha, D.T., Fenta, A.A., Nyssen, J. & Adgo, E. (2017). Comprehensive assessment of soil erosion risk for bet- ter land use planning in river basins: a case study of the Upper Blue Nile River. Science of the Total Environment, 574, 95–108.
[15]. Hurni, H. (1985). Erosion-Productivity-Conservation Systems in Ethiopia. Proceedings of 4th International Conference on Soil Conservation, Maracay, Venezuela, 3-9 November 1985, 654-674.
[16]. Jozi, S.A. & Moradi Majd, N. (2015). Evaluation of main factors affecting soil erosion in FAO method using TOPSIS technique. Journal of Conservation and Utilization of Natural Resources, 4(1), 79-99. (in Farsi).
[17]. Kebede, Y.S., Endalamaw, N.T., Sinshaw, B.G., & Atinkut, H.B. (2021). Modeling soil erosion using RUSLE and GIS at watershed level in the upper beles, Ethiopia. Environmental Challenges, 2, 100009.
[18]. Kumar, S., & Hole, R. M. (2021). Geospatial modelling of soil erosion and risk assessment in Indian Himalayan region—A study of Uttarakhand state. Environmental Advances, 4, 100039.
[19]. Martínez-Murillo, J.F., López-Vicente, M., Poesen, J., & Ruiz-Sinoga, J.D. (2011). Modelling the effects of land use changes on runoff and soil erosion in two Mediterranean catchments with active gullies (South of Spain). Landform Analysis, 17, 99-104.
[20]. Mengistu, D., Bewket, W., & Lal, R. (2015). Soil erosion hazard under the current and potential climate change induced loss of soil organic matter in the Upper Blue Nile (Abay) River Basin, Ethiopia. In Sustainable intensification to advance food security and enhance climate resilience in Africa (pp. 137-163). Springer, Cham.
[21]. Moore, I. D., & Burch, G. J. (1986). Physical basis of the length‐slope factor in the universal soil loss equation. Soil Science Society of America Journal, 50(5), 1294-1298.
[22]. Panagopoulos, Y., Dimitriou, E., & Skoulikidis, N. (2019). Vulnerability of a northeast Mediterranean island to soil loss. Can grazing management mitigate erosion? Water, 11(7), 1491.
[23]. Römkens, M.J.M., Prasad, S.N., & Poesen, J.W.A. (1986). Soil erodibility and properties. 492-504.
[24]. Sadhasivam, N., Bhardwaj, A., Pourghasemi, H.R., & Kamaraj, N.P. (2020). Morphometric attributes-based soil erosion susceptibility mapping in Dnyanganga watershed of India using individual and ensemble models. Environmental Earth Sciences, 14(79), 1-28.
[25]. Sarmadi Sayfi, A., Soltani, F. anf Falahatti, N. (2020). Analysis of factors affecting soil erosion in the Aghagir watershed of Qazvin, the fourth international conference on modern researches in agricultural engineering, Environment and natural resources, 8(5), 102-110. (in Farsi).
[26]. Wang, B., Zheng, F., & Römkens, M. J. (2013). Comparison of soil erodibility factors in USLE, RUSLE2, EPIC and Dg models based on a Chinese soil erodibility database. Acta Agriculturae Scandinavica, Section B–Soil & Plant Science, 63(1), 69-79.
[27]. Wischmeier, W. H., & Smith, D. D. (1978). Predicting rainfall erosion losses: a guide to conservation planning (No. 537). Department of Agriculture, Science and Education Administration.
[28]. Yang, X. (2014). Deriving RUSLE cover factor from time-series fractional vegetation cover for hillslope erosion modelling in New South Wales. Soil Research, 52(3), 253-261.
[29]. Zareei, Sh., Ghabel Nezam, A. & Mostafazadeh, R. (2019). Analysis of soil erosion using the SEIM model in the sub-watersheds of Iril, Ardabil, the first international conference and the fourth national conference on the protection of natural resources and environment, 114-122. (in Farsi).
[30]. Zolfaghari, A., & Hajabbasi, M. (2008). The effects of land use change on physical properties and water repellency of soils in Lordegan forest and Freidunshar pasture. Water and Soil, 22(2), 251-262. (in Farsi).