مقایسه دو روش فازی و شاخص ترکیبی بیابان‌زایی (IDI) در ارزیابی شدت بیابان‌زایی در شهرستان تربت‌حیدریه استان خراسان رضوی با تأکید بر شاخص‌های پوشش گیاهی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار دانشکده جغرافیا و علوم محیطی، دانشگاه حکیم سبزواری، سبزوار، ایران

2 مسئول واحد انفورماتیک دانشگاه پیام نور استان چهارمحال و بختیاری، شهرکرد، ایران

10.29252/aridbiom.2023.18283.1887

چکیده

در این پژوهش به مقایسة کارآیی دو روش فازی و شاخص ترکیبی بیابان‌زایی در شهرستان تربت‌حیدریه استان خراسان‌رضوی در تعیین بیابان‌زایی پرداخته شده است. در این راستا، شاخص‌ ارتقاءیافتة پوشش گیاهی، شاخص وضعیت پوشش گیاهی، شاخص شوری، شاخص ترکیبی خشکسالی، شاخص وضعیت دمایی برای سال‌های 2000 و 2020 میلادی استفاده‌شده است. اطلاعات این شاخص‌ها با دو روش بیشینه-کمینه و روش فازی هنجارسازی شده و با روش سلسله‌ مراتبی (AHP) وزن متناسبی به آنها اختصاص داده شد. سرانجام با روش ترکیب وزنی و شاخص تلفیقی بیابان‌زایی نقشة شدت بیابان‌زایی در منطقه تعیین شد. نتایج نشان داد که در روش فازی 45 درصد (1676 کیلومترمربع) از منطقه دچار بیابان‌زایی شدید و خیلی شدید است ولی درعین‌حال، عمده سطح منطقه یعنی 55 درصد (2048 کیلومترمربع) شدت خفیف و متوسط داشته‌اند. در مقام مقایسه، در شاخص تلفیقی بیابان‌زایی هیچ سطحی از منطقه در کلاس خیلی شدید قرار ندارد ولی درعین‌حال، کلاس شدید 67 درصد (2496 کیلومترمربع از منطقه را پوشش داده است. بر این ‌اساس، اگرچه دو روش فازی و شاخص تلفیقی بیابان‌زایی عمدة منطقه را در خطر بیابان‌زایی طبقه‌بندی کرده‌اند، اما این طبقه‌بندی در روش فازی به‌شدت سخت‌گیرانه‌تر از شاخص تلفیقی بیابان‌زایی بوده است. درعین‌حال، شاخص تلفیقی بیابان‌زایی نیز تمایل به بیش‌تخمینی شرایط بیابان‌زایی دارد. مقایسه صورت‌گرفته بین داده‌های میدانی اندازه‌گیری شده و مقادیر مشابه در نقشه‌های به‌دست‌آمده نشان از تطابق بیشتر شاخص تلفیقی بیابان‌زایی (شاخص کاپا 73/0) در برابر روش فازی (شاخص کاپا 54/0) بوده است. بنابراین می‌توان گفت که شاخص تلفیقی بیابان‌زایی اگرچه کارایی بالاتری داشته ولی هم‌زمان دچار بیش‌تخمینی بیابان‌زایی در منطقه شده است. این روش برای ارزیابی بیابان‌زایی در منطقه در برابر روش فازی پیشنهاد می‌گردد. نتایج این تحقیق برای مدیران اراضی در زمینة ارزیابی روند بیابان‌زایی و برنامه‌ریزی برای مقابله با این پدیده مفید خواهد بود.

کلیدواژه‌ها


[1]. Akbari, M., Memarian, H., Neamatollahi, E., Jafari Shalamzari, M., Alizadeh Noughani, M., & Zakeri, D. (2021). Prioritizing policies and strategies for desertification risk management using MCDM–DPSIR approach in northeastern Iran. Environment Development and Sustainability, 23(2), 2503-2523.
[2]. Akbari, M., Shalamzari, M.J., Memarian, H., & Gholami, A. (2020). Monitoring desertification processes using ecological indicators and providing management programs in arid regions of Iran. Ecological Indicators, 111: 106011.
[3]. Albalawi, E.K., & Kumar, L. (2013). Using remote sensing technology to detect, model and map desertification: A review. Journal of Food, Agriculture and Environment, 11(2), 791-797.
[4]. Almamalachy, Y.S., Al-Quraishi, A.M.F., & Moradkhani, H. (2020). Agricultural drought monitoring over Iraq utilizing MODIS products, in Environmental Remote Sensing and GIS in Iraq. Springer, 253-278.
[5]. Chen, PY., Fedosejevs, G., Tiscareño-LóPez, M., & J.G. Arnold. (2006). Assessment of MODIS-EVI, MODIS-NDVI and VEGETATION-NDVI Composite Data Using Agricultural Measurements: An Example at Corn Fields in Western Mexico. Environmental monitoring and assessment, 119, 69-82.
[6]. Daliakopoulos, I., Tsanis, I., Koutroulis, A., Kourgialas, N., Varouchakis, A., Karatzas, G., & Ritsema, C. (2016). The threat of soil salinity: A European scale review. Science of the Total Environment, 2016. 573, 727-739.
[7]. Didan, K., Munoz, A.B., Solano, R., & Huete, A. (2015). MODIS vegetation index user’s guide (MOD13 series). University of Arizona: Vegetation Index and Phenology Lab, 35, 2-33.
[8]. Du, L., Tian, Q., Yu, T., Meng, Q., Jancso, T., Udvardy, P., & Huang, Y. (2013). A comprehensive drought monitoring method integrating MODIS and TRMM data. International Journal of Applied Earth Observation and Geoinformation, 2013. 23, 245-253.
[9]. Fathi, A., Jafari, R., & Soltani, S. (2015). Performance comparison of MEDALUD, MICD and FAO-UNEP desertification mapping models in the desertification hotspot of Jarghoyeh region, Isfahan province. Journal of Agricultural Science and Technology, 19(71), 299-310. (in Farsi)
[10]. Feng, Q., Ma, H., Jiang, X., Wang, X., & Cao, S. (2015). What has caused desertification in China? Scientific reports, 5(1), 1-8.
[11]. Ferreira, T.R., Pace, F.T.D., Silva, B.B.D., & Delgado, J.R. (2017). Identification of desertification-sensitive areas in the Brazilian Northeast through vegetation indices. Engenharia Agrícola, 37, 1190-1202.
[12]. Gad, A., & Lotfy, I. (2008). Use of remote sensing and GIS in mapping the environmental sensitivity areas for desertification of Egyptian territory. Solid Earth Discuss, 3(2), 41-85.
[13]. Gale, T. (2009). A ricardian Analysis of the distribution of climate change impacts on agriculture across agro-ecological zones in Africa. World Ban, 43, 313-332.
[14]. Jafari, M., Gholami, A., Khalighi Sigaroudi, S., Alizadeh Shabani, A., & Arzani, H. (2018). Site selection for rainwater harvesting for wildlife using Multi-Criteria Evaluation (MCE) technique and GIS in the kavir national park, Iran. Journal of Rangeland Science, 8(1), 77-92.
[15]. Jafari Shalamzari, M., Zhang, W., Gholami, A. & Zhang, Z. (2019). Runoff Harvesting Site Suitability Analysis for Wildlife in Sub-Desert Regions. Water, 2019. 11(9), 1944.
[16]. Jain, A., Nandakumar, K., & Ross, A. (2005). Score normalization in multimodal biometric systems. Pattern recognition, 38(12), 2270-2285.
[17]. Kacem, H.A., Fal, S., Karim, M., Alaoui, H.M., Rhinane, H., & Maanan, M. (2021). Application of fuzzy analytical hierarchy process for assessment of desertification sensitive areas in North West of Morocco. Geocarto International, 2021. 36(5), 563-580.
[18]. Karnieli, A., Gabai, A., Ichoku, C., Zaady, E., & Shachak, M. (2002). Temporal dynamics of soil and vegetation spectral responses in a semi-arid environment. International Journal of Remote Sensing, 23(19), 4073-4087.
[19]. Kirana, A., Ariyanto, R., Ririd, A., & Amalia. E. (2020). Agricultural drought monitoring based on vegetation health index in East Java Indonesia using MODIS Satellite Data. in IOP Conference Series: Materials Science and Engineering. IOP Publishing.
[20]. Kogan, F.N. (1995). Application of vegetation index and brightness temperature for drought detection. Advances in Space Research, 15(11), 91-100.
[21]. Kotiaho, J.S., & Halme, P. (2018). The ipbes assessment report on land degradation and restoration. 26(11), 1243-1248
[22]. Kukunuri, A.N., Murugan, D., & Singh, D. (2020). Variance based fusion of VCI and TCI for efficient classification of agriculture drought using MODIS data. Geocarto International, 37 Variance based fusion of VCI and TCI for efficient classification of agriculture drought using MODIS data. Geocarto International, 37(10), 1-22.
[23]. Kumar, B.P., Babu, K.R., Rajasekhar, M., & Ramachandra, M. (2019). Assessment of land degradation and desertification due to migration of sand and sand dunes in Beluguppa Mandal of Anantapur district (AP, India), using remote sensing and GIS techniques. Indian Geophysical Union, 23(2), 173-180.
[24]. Kust, G. (2011). To the treatment and interpretation of the “desertification” term in Russia. Arid ecosystems, 1(4), 299-304.  
[25]. Laity, J.J. (2009). Deserts and desert environments. Vol. 3. John Wiley & Sons.
[26]. Matsushita, B., Yang, W., Chen, J., Onda, Y., & Qiu, G. (2007). Sensitivity of the enhanced vegetation index (EVI) and normalized difference vegetation index (NDVI) to topographic effects: a case study in high-density cypress forest. Sensors, 7(11), 2636-2651.
[27]. Mehta, M., Saha, S., & Agrawal, S. (2013). Evaluation of Indices and Parameters Obtained from Optical and Thermal Bands of Landsat 7 ETM+ for Mapping of Salt-Affected Soils and Water-Logged Areas. Asian Journal of Geoinformatics, 12(4), 9-16.
[28]. Murray, N.J., Keith, D.A., Bland, L.M., Ferrari, R., Lyons, M.B., Lucas, R., Pettorelli, N., & Nicholson, E. (2018). The role of satellite remote sensing in structured ecosystem risk assessments. Science of the Total Environment, 619, 249-257.
[29]. Oldeman, L., Hakkeling, R., Sombroek, W., & Batjes, N. (1991). Global assessment of human-induced soil degradation (GLASOD), in World map of the status of human-induced soil degradation. Wageningen, Netherlands: Winand Staring Centre–ISSSFAO–ITC.
[30]. Pashaei, M., Rashki, A., & Sepehr, A. (2017). An integrated desertification vulnerability index for Khorasan-Razavi, Iran. Natural Resources and Conservation, 5(3), 44-55.  
[31]. Saaty, T.L. (2008). Decision making with the analytic hierarchy process. International journal of services sciences, 1(1): 83-98.
[32]. Santini, M., Caccamo, G., Laurenti, A., Noce, S., & Valentini, R. (2010). A multi-component GIS framework for desertification risk assessment by an integrated index. Applied Geography, 30(3): 394-415.
[33]. Shahid, S.A., Zaman, M., & Heng, L. (2018). Soil salinity: historical perspectives and a world overview of the problem, in Guideline for salinity assessment, mitigation and adaptation using nuclear and related techniques. Springer. 43-53.
[34]. Shammi, S.A., & Meng, Q. (2021). Use time series NDVI and EVI to develop dynamic crop growth metrics for yield modeling. Ecological Indicators, 121(1), 107124.
[35]. Shihab, T.H., & Al-hameedawi, A.N. (2020). Desertification Hazard Zonation in Central Iraq Using Multi-criteria Evaluation and GIS. Journal of the Indian Society of Remote Sensing, 48(3), 397-409.
[36]. Sörensson, A.A., & Ruscica, R.C. (2018). Intercomparison and uncertainty assessment of nine evapotranspiration estimates over South America. Water Resources Research, 54(4), 2891-2908.
[37]. Vogt, J., Safriel, U., Von Maltitz, G., Sokona, Y., Zougmore, R., Bastin, G., & Hill, J. (2011). Monitoring and assessment of land degradation and desertification: towards new conceptual and integrated approaches. Land Degradation & Development, 22(2), 150-165.
[38]. Wang, L., Seki, K., Miyazaki, T., & Ishihama, Y. (2009). The causes of soil alkalinization in the Songnen Plain of Northeast China. Paddy and Water Environment, 7(3), 259-270.
[39]. Yadav, A.N., Gulati, S., Sharma, D., Singh, R.N., Rajawat, M.V.S., Kumar, R., Dey, R., Pal, K.K., Kaushik, R., & Saxena, A.K. (2019). Seasonal variations in culturable archaea and their plant growth promoting attributes to predict their role in establishment of vegetation in Rann of Kutch. Biologia, 74(8), 1031-1043.
[40]. Yu, X., Zhuo, Y., Liu, H., Wang, Q., Wen, L., Li, Z., Liang, C., & Wang, L. (2020). Degree of desertification based on normalized landscape index of sandy lands in inner Mongolia, China. Global Ecology and Conservation, 23, e01132.
[41]. Zandi, R., Entezari, A., Baaghide, M., & Khosravian, M. (2021). Evaluation of drought and its effects on vegetation in southern regions of Iran. Researches in Earth Sciences. 12(2), 36-49.