مقایسه شاخص تحمل به آلودگی در دو گونه تاغ (Haloxylon aphyllum) و قره‌داغ (Nitraria schoberi) تحت شرایط گرد و غبار

نوع مقاله : مقاله کوتاه پژوهشی

نویسندگان

1 دانش آموخته دکتری مدیریت و کنترل بیابان، دانشگاه یزد، یزد، ایران

2 استاد، گروه محیط زیست، دانشگاه یزد، یزد، ایران

3 دانشیار، گروه خاکشناسی، دانشگاه تهران، تهران، ایران

4 استادیار پژوهشی، بخش تحقیقات جنگلها و مراتع، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان خوزستان، سازمان تحقیقات، آموزش و ترویج کشاورزی، اهواز، ایران

10.29252/aridbiom.2023.19228.1908

چکیده

شناسایی گونه ­های گیاهی مناسب برای ایجاد کمربند سبز در اطراف شهرهای مناطق خشک و بیابانی به­ منظور کاهش آلودگی هوا دارای اهمیت است. شاخص تحمل به آلودگی هوا یکی از شاخص­ های شناخته­ شده برای تعیین تحمل گونه ­های گیاهی به آلودگی است. این تحقیق با هدف بررسی گردوغبار بر روی خصوصیات فیزیولوژیکی و بیوشیمیایی دو گونه شورپسند تاغ (Nitraria schoberi) و قره ­داغ (Haloxylon Aphyllum) و مقایسه اثر گردوغبار بر روی شاخص تحمل به آلودگی هوا و تعیین گونه مناسب برای ایجاد کمربند سبز، به‌صورت آزمایش فاکتوریل در قالب طرح کاملاً تصادفی؛ با دو تیمار (بدون گردوغبار و اِعمال گردوغبار) در سه تکرار به مدت 5 ماه و در شرایط گلخانه ­ای اجرا شد. به­ منظور بررسی اثر گردوغبار، با استفاده از دستگاه شبیه­ ساز غبار بر روی نمونه ­ها با فاصله زمانی یک هفته ­ای (به میزان 5/1 g/m2/month) غباردهی انجام شد. پس از اتمام دوره آزمایش، پارامترهای آسکوربیک اسید، کلروفیل کل، محتوی نسبی آب و pH عصاره برگ اندازه ­گیری و در آخر شاخص تحمل به آلودگی هوای دو گونه محاسبه شد. نتایج نشان داد پارامتر کلروفیل کل در گونة قره ­داغ 19 درصد و محتوای نسبی کل 8 درصد نسبت به شاهد کاهش داشت در حالی که مقدار اسیدآسکوربیک در تاغ 11 درصد و در قره ­داغ به مقدار 14 درصد و pH عصاره برگ قره ­داغ 29 درصد نسبت به شاهد خود افزایش یافت. با توجه به مقدار APTI (15/8) گونه تاغ در مقایسه به قره ­داغ (41/7) و بدلیل اختلاف ارتفاع این دو گونه، تاغ گزینه مناسب­ تری برای کاشت در کمربند سبز به­منظور کاهش آلودگی هوا باشد.

کلیدواژه‌ها


[1]. Abbasi, A. & Malayeri, M. R. (2019). Comparative study of sandstorm properties in Iran and world in terms of particle size and material. Environmental Researches, 9(18), 53-65 (in Farsi).
[2]. Agbaire, P.O. & Esiefarienrhe, E. (2009). Air pollution tolerance indices (apti) of some plants around otorogun gas plant in Delta State, Nigeria. Journal of Applied Sciences and Environmental Management, 13(1), 11-14.
[3]. Ahmadi Foroushani, M., Opp, C. & Groll, M. (2021). Investigation of Aeolian dust deposition rates in different climate zones of Southwestern Iran. Atmosphere, 12(2), 1-23.
[4]. Amal, M. A. R. & Mohamed, M. I. (2012). Effect of cement dust deposition on physiological behaviors of some halophytes in the salt marshes of Red Sea. Journal of Biological Science, 3(1), 1-11.
[5]. Ashraf, M. & Harris, P.J.C. (2004). Potential biochemical indicators of salinity tolerance in plants. Plant Science, 166(1), 3-16.
[6]. Assadi, A., Ghasemi Pirbalouti, A., Malekpoor, F., Teimori, N. & Assadi, L. (2011). Impact of air pollution on physiological and morphological characteristics of Eucalyptus camaldulensis Den. Journal of Food, Agriculture & Environment, 9(2), 676-679.
[7]. Bellini, E. & De Tullio, M. C. (2019). Ascorbic acid and ozone: Novel perspectives to explain an elusive relationship. Plants, 8(5), 122.
[8]. CCME. (2011). Canadian soil quality guideline. Canada: Canadian Council of Ministers of the environment.
[9]. Chao, Y.Y., Hong, C.Y. & Kao, C.H. (2010). The decline in ascorbic acid content is associated with cadmium toxicity of rice seedlings. Plant Physiology and Biochemistry, 48(5), 374-381.
[10]. Chaudhary, I. J. & Rathore, D. (2019). Dust pollution: its removal and effect on foliage physiology of urban trees. Sustainable Cities and Society, 51, 1-10.
[11]. Chauhan, A. S. (2008). Impact of dust pollution on photosynthetic pigments of some selected trees grown at nearby of stone-crushers. Environment Conservation, 9(3), 11-13.
[12]. Elloumi, N., Mezghani, I., Rouina, B. & Ben Abdallah, F. (2018). A Comparative Study of Air Pollution Tolerance Index (APTI) of Some Fruit Plant Species Growing in the Industrial Area of Sfax, Tunisia. Pollution, 4(3), 439-46.
[13]. Foyer, C.H., Ruban, A.V. & Noctor, G. (2017). Viewing oxidative stress through the lens of oxidative signalling rather than damage. Biochemistry, 474(6), 877-883.
[14]. Gourdji, S. (2018). Review of plants to mitigate particulate matter, ozone as well as nitrogen dioxide air pollutants and applicable recommendations for green roofs in Montreal, Quebec. Environmental Pollution, 241(38), 378-387.
[15]. Hamraz, H., Niaraki, A.S., Omati, M. & Noori, N. (2014). GIS-based air pollution monitoring using static stations and mobile sensor in Tehran/Iran. International Journal of Scientific Research in Environmental Sciences, 2(12), 435-448.
[16]. Heydarnezhad, S. & Ranjbar-Fordoiem A. (2014). Impact of aeolian dust accumulation on some biochemical parameters in black saxaul (Haloxylon aphyllum Bunge) leaves: a case study for the Aran-Bidgol region, Iran. International Journal of Forest, Soil and Erosion, 4(1), 11-15.
[17]. Javanmard, Z., Tabari Kouchaksaraei, M., Bahrami, H., Hosseini, S.M. & Modarres Sanavi, S. D. (2019). Dust collection potential and air pollution tolerance indices in some young plant species in arid regions of Iran. iForest, 12(6), 558-564.
[18]. Joshi, P.C. & Swami, A. (2009). Air pollution induced changes in the photosynthetic pigments of selected plants species. Journal of Environmental Biology, 30(2), 295-298.
[19]. Khuzestan forest and rangelands research center. (2018). Executive comprehensive plan to combat dust in the internal centers of Khuzestan. Khuzestan: Agricultural research education and extension organization. 433 pp (in Farsi).
[20]. Kumar Rai, P. & Panda, L.L.S. (2014). Leaf dust deposition and its impact on Biochemical aspect of some Roadside Plants of Aizawl, Mizoram, North East India. International Journal of Scientific Research in Environmental Sciences, 3(11), 14-19.
[21]. Lichtenthaler, H. K. (1987). Chlorophyll and carotenoids: pigments of photosynthetic bio membranes. Method Enzyme, 148(4), 350-382.
[22]. Maity, S., Mondal, I., Das, B., Mondal, A.K. & Bandyopadhyay, J. (2017). Pollution tolerance performance index for plant species using geospatial technology: evidence from Kolaghat Thermal Plant area, West Bengal, India. Spatial Information Research, 25(1), 57-66.
[23]. Mohammadi, A., Mokhtari, M., Mosleh Arani, A., Taghipour, H., Hajizadeh, Y. & Fallahzadeh, H. (2018). Biomonitoring levels of airborne metals around Urmia Lake using deciduous trees and evaluation of their tolerance for greenbelt development. Environmental Science and Pollution Research, 25(21), 21138-21148.
[24]. Mukherjee, S. P. & Choudhuri, M. A. (1983). Implications of water stress-induced changes in the levels of endogenous ascorbic acid and hydrogen peroxide in Vigna seedlings. Physiology Plant, 58(2), 166-170.
[25]. Najafi Zilaie, M., Mosleh Arani, A., Etesami, H. & Dinarvand, M. (2022). Improved salinity and dust stress tolerance in the desert halophyte Haloxylon aphyllum by halotolerant plant growth-promoting rhizobacteria. Frontiers in Plant Science, 13, 948260.
[26]. Najafi Zilaie, M., Mosleh Arani, A., Etesami, H. & Dinarvand, M. (2022). Halotolerant rhizobacteria enhance the tolerance of the desert halophyte Nitraria schoberi to salinity and dust pollution by improving its physiological and nutritional status. Applied Soil Ecology, 179, 1-16.
[27]. Rai, P. K. (2016). Impacts of particulate matter pollution on plants: Implications for environmental biomonitoring. Ecotoxicology and Environmental Safety, 129, 120-136.
[28]. Rashki, A., Kaskaoutis, D. G., Eriksson, P. G., Rautenbach, C. J., de W. Flamant, C. & Abdi Vishkaee, F. (2014). Spatial-temporal variability of dust aerosols over the Sistan region in Iran based on satellite Observations. Natural Hazards, 71(1), 563-585.
[29]. Ritchie, S. W. & Nguyen, H. T. (1990). Leaf water content and gas exchange parameters of two wheat genotypes differing in drought resistance. Crop Science, 30,105-111.
[30]. Salehi, F., Abbasi, N. & Darabi, F. (2018). An Investigation of the Effects of haze on the Physiology of Plants. The 2nd International Conference on Dust, Ilam, 580-586.
[31]. Santosh, K., Prajapati, B. D. & Tripathi, D. (2008). Anticipated Performance Index of some tree species considered for green belt development in and around an urban area: A case study of Varanasi city, India. Journal of Environmental Management, 88(4), 1343-1349.
[32]. Senthil, P. K., Sobana, K., Kavitha, K. & Jegadeesan, D. M. (2015). A study on the effect of cement dust pollution on certain physical and biological parameters of Sessamum indicum plant. Asian Journal of Plant Science and Research, 5(1), 1-3.
[33]. Setsungnern, A., Treesubsuntorn, C. & Thiravetyan, P. (2018). Chlorophytum comosumbacteria interactions for airborne benzene remediation: effect of native endophytic Enterobacter sp. EN2 inoculation and blue-red LED light. Plant Physiology and Biochemistry, 130,181-191.
[34]. Shannigrahi, A. S., Fukushima, T. & Sharma, R. C. (2003). Anticipated air pollution tolerance of some plant species considered for green belt development in and around an industrial/urban area in India: an overview. International Journal of Environmental Studies, 61(2), 125-137.
[35]. Shojaee Barjoee, S., Azimzadeh, H. R. & Mosleh Arani, A. (2020). Tolerance of Plants to Air Pollution in the Industrial Complex of Glass, Khak-e-Chini, Tile and Ceramics in Ardakan, Iran. Journal of School of Public Health and Institute of Public Health Research, 18(1), 73-92 (in Farsi).
[36]. Singh, S. K. & Rao, D. N. (1983). Evaluation of plants for their tolerance to air pollution. In: Proceeding of the Symposium on Air Pollution Control. India, 218-224.
[37]. Singh, P. & Pal, A. (2017). Response of dust accumulation on roadside plant species due to open cast mining at Jhansi-Allahabad NH-76, Uttar Pradesh, India. Tropical Plant Research, 4(3), 461-467.
[38]. Singh, S.N. & Rao, D.N. (1981). Certain responses of wheat plants to cement dust pollution. Environmental Pollution, 24(1), 75-81.
[39]. Thompson, J.R., Mueller, P.W., Fluckiger, W. & Rutter, A. J. (1984). The effect of dust on photosynthesis and its significance for roadside plants. Environmental Pollution, 34, 171-190.
[40]. Yadav, R. & Pandey, P. (2020). Assessment of Air Pollution Tolerance Index (APTI) and Anticipated Performance Index (API) of Roadside Plants for the Development of Greenbelt in Urban Area of Bathinda City, Punjab, India. Bulletin of Environmental Contamination and Toxicology, 105, 906-914.
[41]. Yaghmaei, L., Jafari, R., Soltani, S., Eshghizadeh, H. R. & Jahanbazy, H. (2020). Interaction Effects of Dust and Water Deficit Stresses on Growth and Physiology of Persian Oak (Quercus Brantii Lindl.). Journal of Sustainable Forestry, 41(2), 134-158.
[42]. Zhao, X., He, M., Shang, H., Yu, H., Wang, H., Li, H., Piao, J., Quinto, M. & Li, D. (2018). Biomonitoring polycyclic aromatic hydrocarbons by Salix matsudana leaves: a comparison with the relevant air content and evaluation of environmental parameter effects. Atmospheric Environment, 181, 47-53.
[43]. Zilaie, M.N., Arani, A.M., Etesami, H., Dinarvand, M. & Dolati, A. (2022). Halotolerant plant growth-promoting rhizobacteria-mediated alleviation of salinity and dust stress and improvement of forage yield in the desert halophyte seidlitzia rosmarinus. Environmental and Experimental Botany. 201, 104952.