[1]. Adeyemi, A. A., Jimoh, S. O., & Adesoye, P. O. (2013). Crown ratio models for tropical rainforests species in Oban division of the cross river national park, Nigeria. Journal of Agriculture and Social Research (JASR), 13(1), 63-76.
[2]. Bechtold, W. A. (2003). Crown-diameter prediction models for 87 species of stand-grown trees in the eastern United States. Southern Journal of Applied Forestry, 27(4), 269-278.
[3]. Berrill, J. P., & Dagley, C. M. (2012). Geographic patterns and stand variables influencing growth and vigor of Populus tremuloides in the Sierra Nevada (USA). ISRN Forestry, 2012.
[4]. Bosela, M., Konopka, B., seben, V., Vladovic, J., & Tobin, B. (2014). Modelling height to diameter ratio–an opportunity to increase Norway spruce stand stability in the Western Carpathians. Forestry Journal, 60(2), 71-80.
[5]. Cienciala, E., Apltauer, J., Exnerova, Z., & Tatarinov, F. (2008). Biomass functions applicable to oak trees grown in Central-European forestry. Journal of Forest Science, 54(3), 109-120.
[6]. Daryaei, M.G., Hosseini, S.K., Taheri, K., Mirzaei, J., & Mzbani, A. (2012). Effect of morphological variables of Pistacia atlantica on gum and seed production, Iranian Journal of Biology, 25(2), 303-315. (in Farsi)
[7]. DeYoung, J. (2016). Forest Measurements: An Applied Approach. Open Oregon Educational Resources.
[8]. Fu, L., Zhang, H., Lu, J., Zang, H., Lou, M., & Wang, G. (2015). Multilevel nonlinear mixed-effect crown ratio models for individual trees of Mongolian Oak (Quercus mongolica) in northeast China. PloS one, 10(8), e0133294. doi:1371/10/journal.pone.0133294.
[9]. Geravand, Y., Hosseini, S.M., Ahmadi, K., Ghomi Avili, A., & Ahmadi, A. (2016). Investigating the structure of wild pistachio stands in protected and non-protected areas of Bagh-Shadi forest, Yazd, Journal of natural ecosystems of Iran, 7(2), 89-101. (In Farsi)
[10]. Holdaway, M. R. (1986). Modeling tree crown ratio. The Forestry Chronicle, 62(5), 451-455.
]11]. Jiang, L. C., & Liu, R. L. (2011). Segmented taper equations with crown ratio and stand density for Dahurian Larch (Larix gmelinii) in Northeastern China. Journal of Forestry research, 22(3), 347-352.
[12]. Kiani, B. (2017). Forest Biometrics: Sampling Designs and Measurement Methods in Forest Sciences. Pelk Press, Tehran. (In Farsi)
[13]. Leites, L. P., Robinson, A. P., & Crookston, N. L. (2009). Accuracy and equivalence testing of crown ratio models and assessment of their impact on diameter growth and basal area increment predictions of two variants of the Forest Vegetation Simulator. Canadian Journal of Forest Research, 39(3), 655-665.
[14]. Makela, A., & Valentine, H. T. (2006). Crown ratio influences allometric scaling in trees. Ecology, 87(12), 2967-2972.
[15]. Medhurst, J. L., & Beadle, C. L. (2001). Crown structure and leaf area index development in thinned and unthinned Eucalyptus nitens plantations. Tree Physiology, 21(12-13), 989-999.
[16]. Monserud, R. A., & Sterba, H. (1996). A basal area increment model for individual trees growing in even-and uneven-aged forest stands in Austria. Forest ecology and management, 80(1-3), 57-80.
[17]. Mosleh Arani, A., Mollakhalili, M.H., & Kiani, B. (2016). Investigation on important causes of beetle attack to Amygdalus scoparia trees in central Zagros, Bagh-shadi, Harat, Yazd. Iranian Journal of Zagros forests Researches, 3(1), 75-86. (in Farsi)
[18]. Oyebade, B. A., & Onyeoguzoro, T. C. (2017). Tree crown ratio model for Hevea brasiliensis (A. juss.) plantation in Rubber Research Institute of Nigeria (RRIN) Edo State, Nigeria. World Scientific News, 70(2), 97-110.
[19]. Peter, A. O., & Oluwafemi, O. A. (2008). Interim Crown Ratio Models for a Mixed Tectona grandis and Gmeìina arborea stand in the University of Ibadan, Nigeria. Research Journal of Forestry, 2(1), 34-42.
[20]. Popoola, F. S., & Adesoye, P. O. (2012). Crown ratio models for Tectona grandis (Linn. f) stands in Osho Forest reserve, Oyo State, nigeria. Journal of Forest Science, 28(2), 63-67.
[21]. Sanchez-González, M., Cañellas, I., & Montero, G. (2007). Generalized height-diameter and crown diameter prediction models for cork oak forests in Spain, Investigación Agraria: Sistemas y Recursos Forestales, 16(1), 76-88.
[22]. Singh, A. K., Tripathy, R., & Chopra, U. K. (2008). Evaluation of CERES-Wheat and CropSyst models for water–nitrogen interactions in wheat crop. Agricultural water management, 95(7), 776-786.
[23]. Shcherbakov, M. V., Brebels, A., Shcherbakova, N. L., Tyukov, A. P., Janovsky, T. A., & Kamaev, V. A. E. (2013). A survey of forecast error measures. World Applied Sciences Journal, 24(24), 171-176.
[24]. Sharma, R. P., Vacek, Z., Vacek, S., Podrazsky, V., & Jansa, V. (2017). Modelling individual tree height to crown base of Norway spruce (
Picea abies (L.) Karst.) and European beech (
Fagus sylvatica L.).
PloS one, 12(10), e0186394.
https://doi.org/1371/10/journal.pone.0186394.
[25]. Soares, P., & Tomé, M. (2001). A tree crown ratio prediction equation for eucalypt plantations. Annals of Forest Science, 58(2), 193-202.
[26]. Temesgen, H., LeMay, V., & Mitchell, S. J. (2005). Tree crown ratio models for multi-species and multi-layered stands of southeastern British Columbia. The Forestry Chronicle, 81(1), 133-141.
[27]. Toney, C., & Reeves, M. C. (2009). Equations to convert compacted crown ratio to uncompacted crown ratio for trees in the Interior West. Western Journal of Applied Forestry, 24(2), 76-82.
[28]. Weaver, B., & Wuensch, K. L. (2013). SPSS and SAS programs for comparing Pearson correlations and OLS regression coefficients. Behavior research methods, 45(3), 880-895.
[29]. Weiskittel, A. R., Kershaw, J. A., Vanclay, J. K., & Hann, D. W. (2011). Forest Growth and yield Modeling Wiley-Blackwell, university of Tehran press, Tehran.
[30]. Zhao, D., Kane, M., & Borders, B. E. (2012). Crown ratio and relative spacing relationships for loblolly pine plantations. Open Journal of Forestry, 2(3), 101.