[1]. Bazrafshan, O., Zamani, H., & Shekari, M. (2020). A copula‐based index for drought analysis in arid and semi‐arid regions of Iran. Natural Resource Modeling, 33(1), e12237.
[2]. Bazrafshan, J., Hejabi, S., & Rahimi, J. (2014). Drought monitoring using the multivariate standardized precipitation index (MSPI). Water resources management, 28(4), 1045-1060.
[3]. Bazrafshan, O., Mahmudzadeh, F., & Bazrafshan, J. (2017). Evaluation of temporal trends of the drought indices SPI and SPEI in the Southern Coast of Iran. Desert Management, 4(8), 54-69. (in Farsi)
[4]. Bazrafshan, J., Nadi, M., & Ghorbani, K. (2015). Comparison of empirical copula-based joint deficit index (JDI) and multivariate standardized precipitation index (MSPI) for drought monitoring in Iran. Water Resources Management, 29(6), 2027-2044.
[5]. Bonaccorso, B., Bordi, I., Cancelliere, A., Rossi, G., & Sutera, A. (2003). Spatial variability of drought: an analysis of the SPI in Sicily. Water resources management, 17(4), 273-296.
[6]. Dehban, H., & Ebrahimi, K., & Araghinejad, S. (2015). Introduction and assessment of a new drought monitoring index, mrdi – case study: gorganroud basin, iran. Iranian Journal Of Soil and Water Research, 46(1), 19-30. (in Farsi)
[7]. Eghtedar Nezhad, M., Bazrafshan, O., & Sadeghi Lari, A. (2017). Adaptive Evaluation of SPI, RDI and SDI Indices in Analyzing the Meteorological and Hydrological Drought Characteristics (Case Study: Bam Plain). Water and Soil Science, 26(4.2), 69-81. (in Farsi)
[8]. Genest, C., & Rivest, L. P. (1993). Statistical inference procedures for bivariate Archimedean copulas. Journal of the American statistical Association, 88(423), 1034-1043.
[9]. Ghabaei sough, M., & Zare Abyaneh, H., & Mosaedi, a. (2017). development of adi, the aggregate drought index, based on principle component analysis for monitoring agricultural drought in golestan province, iran. iran-water resources research, 13(2 ), 56-73. (in Farsi)
[10]. Ghorbani AghdamM., Dinpazhuh, Y., Fakheri FardA., & DarbandiS. (2012). Regionalization of Urmia Lake Basin from the View of Drought Using Factor Analysis. Journal of Water and Soil, 26(5), 1268-1276. (in Farsi)
[11]. Hao, Z., & AghaKouchak, A. (2013). Multivariate standardized drought index: a parametric multi-index model. Advances in Water Resources, 57, 12-18.
[12]. Hashemi, NA., Bazrafshan, J., & Nazi, G. A. (2015). Joint Deficit Index (JDI) is computed based on combination of the 12 modified standardize percipittion index. journal of soil and water resources conservation, 4(3), 53-64. (in Farsi)
[13]. Kao, S. C., & Govindaraju, R. S. (2010). A copula-based joint deficit index for droughts. Journal of Hydrology, 380(1-2), 121-134.
[14]. Kao, S. C., & Govindaraju, R. S. (2010). Reply to comment by TP Hutchinson on “Trivariate statistical analysis of extreme rainfall events via the Plackett family of copulas”. Water Resources Research, 46(4).
[15]. Kao, S. C., & Govindaraju, R. S. (2008). Trivariate statistical analysis of extreme rainfall events via the Plackett family of copulas. Water Resources Research, 44(2).
[16]. Keyantash, J. A., & Dracup, J. A. (2004). An aggregate drought index: Assessing drought severity based on fluctuations in the hydrologic cycle and surface water storage. Water Resources Research, 40(9).
[17]. Khani Temeliyeh, Z., Rezaei, H., Mirabbasi Najafabadi, R. (2020). Multivariate Analysis of Meteorological Droughts in Iran Using Joint Deficit Index (JDI). Journal of Agricultural Meteorology, 8(1), 26-39. (in Farsi)
[18]. Li, Q., Zeng, M., Wang, H., Li, P., Wang, K., & Yu, M. (2015). Drought assessment using a multivariate drought index in the Huaihe River basin of Eastern China. Proceedings of the International Association of Hydrological Sciences, 369, 61-67.
[19]. Amiri, M., Ebrahimi, M., & Aminirakan, A. (2019). Simulation of climate change effects on potato crop yield using AquaCrop plant growth model. Irrigation and Water Engineering, 9(3), 125-142. (in Farsi)
[20]. McKee, T. B., Doesken, N. J., & Kleist, J. (1993, January). The relationship of drought frequency and duration to time scales. In Proceedings of the 8th Conference on Applied Climatology (Vol. 17, No. 22, pp. 179-183).
[21]. Mirabbasi, R., Anagnostou, E. N., Fakheri-Fard, A., Dinpashoh, Y., & Eslamian, S. (2013). Analysis of meteorological drought in northwest Iran using the Joint Deficit Index. Journal of Hydrology, 492, 35-48.
[22]. Mishra, A. K., & Singh, V. P. (2011). Drought modeling–A review. Journal of Hydrology, 403(1-2), 157-175.
[23]. Nalbantis, I., & Tsakiris, G. (2009). Assessment of hydrological drought revisited. Water resources management, 23(5), 881-897..
[24]. Nelsen, R. B. (2006). Archimedean Copulas. An Introduction to Copulas, 109-155.
[25]. Sharma, T. C., & Panu, U. S. (2010). Analytical procedures for weekly hydrological droughts: a case of Canadian rivers. Hydrological Sciences Journal–Journal des Sciences Hydrologiques, 55(1), 79-92.
[26]. Sklar, A. (1959). Distribution functions of n dimensions and margins. Publications of the Institute of Statistics of the University of Paris, 8, 229-231.
[27]. Soule, P. T. (1990). Spatial patterns of multiple drought types in the contiguous United States: A seasonal comparison. Climate Research, 1, 13-21.
[28]. Stagge, J. H., Tallaksen, L. M., Gudmundsson, L., Van Loon, A. F., & Stahl, K. (2015). Candidate distributions for climatological drought indices (SPI and SPEI). International Journal of Climatology, 35(13), 4027-4040.
[29]. Wilhite, D. A. (1996). A methodology for drought preparedness. Natural Hazards, 13(3), 229-252.
[30]. Wilhite, D. A., Svoboda, M. D., & Hayes, M. J. (2007). Understanding the complex impacts of drought: A key to enhancing drought mitigation and preparedness. Water resources management, 21(5), 763-774.
[31]. Wilks, D. S. (2011). Statistical methods in the atmospheric sciences (Vol. 100). Academic press.