[1]. Chepil, W.S., & Woodruff, N.P. (1957). Sedimentary characteristics of dust storms: visibility and dust concentration. American Journal of science, 255, PP 104-114.
[2]. Davor, A., Viktor, P., Dragan, P., Mirjana, R., & Aleksandra, P. (2013). PM10 emission forecasting using artificial neural networks and genetic algorithm input variable optimization.
Science of the Total Environment, 443, 511–519.
https://doi.org/10.1016/j.scitotenv.2012.10.110.
[3]. Dayan, U., Ziv, B., Shoob, T., Enzel, Y. (2008). Suspended dust over southeastern Mediterranean and its relation to atmospheric circulations.
International Journal of Climatology, 28, 915–924.
https://doi.org/10.1002/joc.1587.
[4]. Dehghan M., Omidvar K., Mozafari G.A., Mazidi A. (2018). Assessment of relationship between PM10 and AOD as important parameters in researches connected to aerosols; using Genetic Algorithm in Yazd. 4th National Conference on Wind Erosion and Dust Storms. Iran. Yazd University, 7-8 March.
[5]. Dehghan M., Omidvar K., Mozafari G.A., Mazidi A. (2018). Assessment of relationship between PM10 and Visibilityin separation of synoptic codes; using Genetic Algorithm in Yazd. 4th National Conference on Wind Erosion and Dust Storms. Iran. Yazd University, 7-8 March.
[6]. Dimitris, V., Kostas, K., Jaakko, K., Teemu, R., Ari, K., Mikko, K. (2011). Inter-comparison of air quality data using principal component analysis, and forecasting of PM10 and PM2.5 concentrations using artificial neural networks. In Thessaloniki and Helsinki.
Science of the Total Environment, 409, 1266-1276.
https://doi.org/10.1016/j.scitotenv.2010.12.039.
[7]. Engel-Cox, J., Hoff, R., M., Rogers, R., Dimmick F., Rush A., Szykman J., Al-Saadi J., Chu A., & Zell E. (2006). Integrating lidar and satellite optical depth with ambient monitoring for 3- dimensional particulate characterization.
Atmospheric Environment, 40 (40): PP 8056-8067.
https://doi.org/10.1016/j.atmosenv.2006.02.039.
[8]. Ganjehkaviri, A., Mohd, M.N., Hosseini, S.E., & Barzegaravval, H. (2017). Genetic algorithm for optimization of energy systems: Solution uniqueness, accuracy, Pareto convergence and dimension reduction.
Energy,
119, 167–177.
https://doi.org/10.1016/j.energy.2016.12.034.
[9]. Grivas, G., & Chaloulakou, A. (2006). Artificial neural network models for prediction of PM10 hourly concentrations, in the Greater Area of Athens. Greece.
Atmospheric Environment, 40 (7), 1216–1229.
https://doi.org/10.1016/j.atmosenv.2005.10.036.
[10]. Grzegorz, M., Wioletta, R., Piotr, O., Artur, B., & Andrzej, B. (2015). The Impact of Selected Parameters on Visibility: First Results from a Long-Term Campaign in Warsaw, Poland. Atmosphere, 6 (8), 1154-1174. Doi: 10.3390/atmos6081154.
[12]. Hejazi, A., Mobasheri M.R., Ahmadyan A. (2014). Enhancement of a Semi-empirical Model using Genetic Algorithm for Estimation of Near Surface Particulate Matter (PM10) Concentration in City of Tehran Using Satellite Images and Weather Data. Geography and Environmental Planning, 25, 37-50. (in Farsi).
[13]. Khoshsima, M., AliakbariBidokhti, A.A., & Ahmadi- Givi F. (2013). Evaluation of aerosol optical depth using visibility and remote sensing data in urban and semi urban areas in Iran. Journal of the Earth and Space Physics, 39, 163-174. (in Farsi).
[14]. Khoshsima, M., SabetGhadam, S., & AliakbariBidokhti A.A. (2015). Estimation of atmospheric particulate matter (PM10) concentration based on remote sensing measurements and meteorological parameters: application of artificial neural network. Journal of the Earth and Space Physics, 41, PP 499-510. (in Farsi).
[15]. Maghrebi, M., & Tajrish, M. (2006). Investigating the Application of Satellite Sensors in Detecting Particulate Particles in Large Cities. The first environmental education congress. (in Farsi).
[16]. Maghrebi M., & Tajreshi, M. (2011). Investigating the Application of Satellite Sensors in Detecting Particulate Particles in Large Cities. Sharif University of Technology, Department of Aerospace Engineering, No 1, PP 38-41. (in Farsi).
[19]. QorbaniSalkhord, R. (2010). Validation of MODIS sensor data in relation to atmospheric pollution in urban areas. Thesis Master of Remote Sensing, Faculty of Surveying. Khaje Nasir Tussi University of Technology. (in Farsi).
[20]. Ranjbaran, M., Ajami, A., Bonjakhi, M., Borzouei, H., & Barzin M. (2015). Study of the relationship between the scattering angle and intensity of the atmospheric particles, reducing horizontal visibility. ICOP & ICPET, 21, 1397-1400. (in Farsi).
[21]. Sanja, G., Josip, K., Goran, G., Oleg, A., Zdravko, Š., Rodelise, E. M., Christodoulou, A., Argyro, N., Athos, A., Kyriakos, T., Kurt, F., Charalambos, P., & Diofantos, H. (2013). Relationship between MODIS based Aerosol Optical Depth and PM10 over Croatia. Central European. Journal of Geosciences, 6 (1), 2-16. DOI: 10.2478/s13533-012-0135-6.
[22]. Shao, Y., Yang, Y., Wang, J., Song, Z., Leslie, L.M., Dong, C., Zhang, Z., Lin, Z., Kanai, Y., Yabuki, S., & Chun, Y. (2003). Northeast Asian dust storms: Real-time numerical prediction and validation, Journal of Geophysical Research Atmospheres, 108, doi: 10.1029/2003JD003667.
[24]. Wang, Z., Chen, L., Tao, J., Zhang, Y., & Su. L. (2010). Satellite-based estimation of regional particulate matter (PM) in Beijing using vertical-and-RH correcting method.
Remote Sensing of Environment. 114 (1), 50–63.
https://doi.org/10.1016/j.rse.2009.08.009.