بررسی تغییرات بلندمدت پوشش‌گیاهی با استفاده از سنجش از دور در مناطق نیمه‌خشک غرب ایران (مطالعه موردی: شهرستان ایوان، استان ایلام)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد، گروه مرتع و آبخیزداری، دانشکده کشاورزی، دانشگاه ایلام، ایلام، ایران.

2 دانشیار، گروه مرتع و آبخیزداری، دانشکده کشاورزی، دانشگاه ایلام، ایلام، ایران.

3 استادیار، گروه مرتع و آبخیزداری، دانشکده کشاورزی، دانشگاه ایلام، ایلام، ایران

10.29252/aridbiom.2026.3994

چکیده

پوشش‌گیاهی از ارکان اساسی در اکوسیستم­های طبیعی بوده و نقش مهمی در حفاظت خاک، ترسیب کربن و تغییرات اقلیمی داشته و به‌عنوان شاخصی مهم در ارزیابی عملکرد و سلامت اکوسیستم‌ها مورد استفاده قرار می­گیرد. لازمه مدیریت صحیح پوشش‌گیاهی اطلاع از شرایط فعلی و روند تغییرات بلندمدت پوشش‌گیاهی است. با توجه به عدم دسترسی به اطلاعات گذشته پوشش‌گیاهی، برای بررسی بلندمدت تغییرات پوشش‌گیاهی، استفاده از فناوری­های سنجش از دور جهت بررسی تغییرات پوشش‌گیاهی دارای اهمیت بالایی می­باشد. در تحقیق حاضر، تغییرات بلند مدت (2024-2000) پوشش‌گیاهی در شهرستان ایوان در استان ایلام طی پنج دوره زمانی (2000، 2005، 2010، 2015، 2020 و 2024) با استفاده از تصاویر چندزمانه ماهواره لندست مورد بررسی قرار گرفت. در این راستا، ابتدا کلاس­های مختلف وضعیت پوشش‌گیاهی (بدون پوشش ­­(>01/.)، فقیر (01/0-12/0)، متوسط (12/0-17/0)، خوب (17/0-28/0) و عالی (<28/0)) بر‌اساس اطلاعات شاخص NDVI استخراج و مورد بررسی قرار گرفت. همچنین تغییرات پوشش‌گیاهی (تغییرات افزایشی، بدون تغییر و تغییرات کاهشی) در دو دوره زمانی 10 ساله (2010-2000 و 2024-2015) با استفاده از روش تفاضل تصویر و تعیین آستانه تغییرات انجام شد. همچنین برای بررسی معنی­داری روند تغییرات موجود از آزمون من-کندال استفاده شد. براساس نتایج بدست آمده، کلاس پوشش فقیر، گسترده­ترین کلاس پوشش‌گیاهی موجود در منطقه بود که دارای روند کاهشی در طول دوره مورد بررسی بوده به‌ طوریکه بیشترین مقدار آن 1/88 درصد در سال 2000 و کمترین مقدار آن 8/39 درصد در سال 2020 بوده‌ است. در حالیکه مناطق با پوشش متوسط و خوب دارای روند افزایشی بوده بطوری‌که به‌ترتیب از 7/10 درصد و 1 درصد در سال 2000 به 41 درصد و 2/11 درصد در سال 2024 افزایش یافتند. نتایج آزمون من-کندال نشان داد که مناطق با پوشش فقیر دارای روند کاهشی معنی­دار و مناطق با پوشش متوسط و خوب دارای روند افزایشی معنی­دار هستند اما مناطق با پوشش عالی و مناطق بدون پوشش فاقد روند معنی­داری بودند. براساس نتایج روش تفاضل تصویر عمده مناطق در کلاس بدون تغییر قرار داشتند و در طول دوره زمانی ساله­های 2000 تا 2024، 5/94 درصد مناطق بدون تغییر باقی ماندند. نتایج بدست آمده از این تحقیق تاکیدی بر کارائی بالای ابزارهای سنجش از دوری از قبیل شاخص­های پوشش‌گیاهی در راستای مطالعات بلندمدت پوشش‌گیاهی بود. همچنین براساس نتایج بدست آمده، پیشنهاد می­شود که از آنجاییکه افزایش کلاس‌های پوشش متوسط، خوب و عالی ناشی از افزایش اراضی آبی و تبدیل اراضی زراعی به باغ بوده نه بهبود وضعیت جنگل‌ها و مرتع، برنامه‌های مدیریتی و حفاظتی برای بهبود وضعیت مراتع و جلوگیری از تبدیل کاربری‌های منابع طبیعی به کشاورزی در این منطقه مورد توجه قرار گرفته و به‌گونه‌ای طراحی شوند که موجب افزایش مراتع با پوشش طبیعی گردد و پوشش طبیعی جایگزین کلاس پوشش فقیر شود.

کلیدواژه‌ها

موضوعات


[1]. Abedini, M., Mohamadzadeh Shishegaran, ,. M. and Ghale, E. (2022). Monitoring and Estimating the Fire-Affected Areas of the Zagros Mountains Using Landsat Satellite Images. Geography and Environmental Planning33(4), 49-62. [in Farsi] 10.22108/GEP.2022.131560.1470
[2]. Almalki, R., Khaki, M., Saco, P. M., & Rodriguez, J. F. (2022). Monitoring and mapping vegetation cover changes in arid and semi-arid areas using remote sensing technology: A review. Remote Sensing14(20), 5143.‏ https://doi.org/10.3390/rs14205143
[3]. Arekhi, S., Niazy, Y., & Adibnejad, M. (2011). monitoring the vegetation cover changes by using remote sensing techniques in Ilam dam basin. Geography And Development, 9(24), 121-136.[in Farsi]
[4]. Avazpour, N., Faramarzi, M., Omidipour, R., & Mehdizadeh, H. (2021). Monitoring the drought effects on vegetation changes using satellite imagery (Case study: Ilam catchment). Geography and Environmental Sustainability11(4), 125-143..[in Farsi] 10.22126/GES.2022.7130.2472
[5]. Caruso, G.; Tozzini, L.; Rall, G.; Primicerio, J.; Moriondo, M.; Palai, G.; Gucci, R. Estimating biophysical and geometrical parameters of grapevine canopies(‘Sangiovese’) by an unmanned aerial vehicle (UAV) and VIS-NIR cameras. Pisa. Vitis 2017, 56, 63–70.
[6]. Faramarzi, M., Kesting, S., Isselstein, J., & Wrage, N. (2010). Rangeland condition in relation to environmental variables, grazing intensity and livestock owners’ perceptions in semi-arid rangeland in western Iran. The Rangeland Journal32(4), 367-377.
[7]. Faramarzi, M., Heidarizadi, Z., Mohamadi, A., & Heydari, M. (2018). Detection of vegetation changes in relation to normalized difference vegetation index (NDVI) in semi-arid rangeland in western Iran.
[8]. Ferchichi, A., Abbes, A. B., Barra, V., & Farah, I. R. (2022). Forecasting vegetation indices from spatio-temporal remotely sensed data using deep learning-based approaches: A systematic literature review. Ecological Informatics68, 101552.‏
[9]. Ghaffar, A. Use of geospatial techniques in monitoring urban expansion and land use change analysis: A case of Lahore, Pakistan. J. Basic Appl. Sci. 2015, 11, 265–273.
[10]. Hamed, K. H., & Rao, A. R. (1998). A modified Mann-Kendall trend test for autocorrelated data. Journal of hydrology204(1-4), 182-196.‏
[11]. Jafari, R., Bashari, H. & Tarkesh, M. (2017). Discriminating and monitoring rangeland condition classes with MODIS NDVI and EVI indices in Iranian arid and semi-arid lands. Arid land research and management, 31(1), 94-110.
[12]. Kermani, F. , Rayegani, B. , Nezami, B. , Goshtasb, H. and Khosravi, H. (2022). Assessing the vegetation trends in arid and semi-arid regions (Case study: Touran Protected Area). Desert Ecosystem Engineering6(17), 1-14. [in Farsi]
[13]. Khenamani, A. , Fathizad, H. and Hakimzadeh, M. A. (2019). Evaluating trend Change Land Use / Cover Using Remote Sensing Technique and Object-Oriented Classification Algorithm (Case study: Bartash Plain in Dehloran, Ilam). Iranian Journal of Range and Desert Research25(4), 723-734. [in Farsi]
[14]. khosravi, L. (2021). Dam Construction Projects and Cultural Heritage, Interaction or confrontation? (A Case Study of Kangir Dam in Ilam Province). a scientific journal of ilam culture21(68.69), 112-130. [in Farsi]
[15]. Khwarahm, N. R. (2021). Spatial modeling of land use and land cover change in Sulaimani, Iraq, using multitemporal satellite data. Environmental Monitoring and Assessment193(3), 148.
[16]. Khan, Z.; Saeed, A.; Bazai, M.H. Land use/land cover change detection and prediction using the CA-Markov model: A case study of Quetta city, Pakistan. J. Geogr. Soc. Sci. 2020, 2, 164–182.
[17]. Knorn, J., Rabe, A., Radeloff, V. C., Kuemmerle, T., Kozak, J., & Hostert, P. (2009). Land cover mapping of large areas using chain classification of neighboring Landsat satellite images. Remote Sensing of Environment113(5), 957-964.‏
[18]. Kumar, S., & Jain, K. (2020). A multi-temporal Landsat data analysis for land-use/land-cover change in Haridwar Region using remote sensing techniques. Procedia Computer Science171, 1184-1193.‏
[19]. Karnieli, A., Agam, N., Pinker, R. T., Anderson, M., Imhoff, M. L., Gutman, G. G., ... & Goldberg, A. (2010). Use of NDVI and land surface temperature for drought assessment: Merits and limitations. Journal of climate23(3), 618-633.‏
[20]. Kendall, M.G., 1955. Rank Correlation Methods. Griffin, London.
[21]. Lyon, J. G., Yuan, D., Lunetta, R. S., & Elvidge, C. D. (1998). A change detection experiment using vegetation indices. Photogrammetric engineering and remote sensing64(2), 143-150.‏
[22]. Mohammadpour, M. , Tatian, M. R. , Tamartash, R. and Hosseinzadeh, J. (2018). Investigating the effects of grazing intensity on the structure and diversity of woody species in the Ilam Strait Dalab forest. Iranian Journal of Forest and Poplar Research26(3), 306-318. [in Farsi]
[23]. Mirahsani, M. S. , Salman Mahiny, A. , Soffianian, A. , Mohamadi, J. , Modarres, R. , Modares, R. and Pourmanafi, S. (2019). Evaluation of Trend in Vegetation Variations using Time Series Images and Mann-Kendall test over Gavkhuni Basin. Journal of Environmental Studies45(1), 99-114. [in Farsi]
[24]. MalAmiri, N., Rashki, A., Al-Dousari, A. and Kaskaoutis, D.G., 2025. Socioeconomic and Health Impacts of Dust Storms in Southwest Iran. Atmosphere16(2), p.159.
[25]. Maleki, Tahereh, Mariyeh Sahraie, Fatemeh Sasani, and Mohana Shahmoradi. "Impact of dust storm on agricultural production in Iran." (2017): 19-26.
[26]. Macleod, R. D., & Congalton, R. G. (1998). A quantitative comparison of change-detection algorithms for monitoring eelgrass from remotely sensed data. Photogrammetric engineering and remote sensing64(3), 207-216.‏
[27]. Mukhopadhaya, S. (2016). Land use and land cover change modelling using CA-Markov Case study: Deforestation Analysis of Doon Valley. J. Agroecol. Nat. Resour. Manag, 3, 1-5.
[28]. Mann, H.B., 1945. Nonparametric tests against trend, Econome- trica, 13, 245-259.
[29]. Manaffar, R., Jabari, H., Feyzi, B., Zeynal zadeh, K., & Moradkhani, S. survey of temporal and spatial changes of vegetation and water of kani borazan wetland using Landsat 8 satellite images in the period of 2013-2016.. J. Aqua. Eco 2022; 12 (1) :17-26
[30]. Omidipour, R. and Nadaf, M. (2025). Study of Vegetation Cover Changes in North Khorasan Province Using Remote Sensing-Based Vegetation Indices (Case Study: Jiransu Rangelands). Integrated Watershed Management. [in Farsi]
[31]. Oommen, T., 2008. An objective analysis of Support Vector Machine based classification for remote sensing. Mathematical Geosciences, 40; 409–424.
[32]. Omidipour, R., Ebrahimi, A.A., Tahmasbi, P. & Farmarzi, M. (2020). The effect of grazing on the relationship between ground vegetation cover and plant biomass with vegetation indices in the Sabz Kuh region, Chaharmahal and Bakhtiari. Rangeland and Watershed Management Journal, 73(1), 33-47.
[33]. Pham, Q. B., Ali, S. A., Parvin, F., Van On, V., Sidek, L. M., Đurin, B., ... & Minh, N. N. (2024). Multi-spectral remote sensing and GIS-based analysis for decadal land use land cover changes and future prediction using random forest tree and artificial neural network. Advances in space research74(1), 17-47.‏
[34]. Qu, S., Wang, L., Lin, A., Yu, D., & Yuan, M. (2020). Distinguishing the impacts of climate change and anthropogenic factors on vegetation dynamics in the Yangtze River Basin, China. Ecological Indicators108, 105724.‏
[35]. Rogan, J., & Chen, D. (2004). Remote sensing technology for mapping and monitoring land-cover and land-use change. Progress in planning61(4), 301-325.‏
[36]. Rouse, J. W., Hass, R. H., Schell, J. A., & Deering, D. W. (1973). Monitoring vegetation systems in the Great Plains with ERTS. Proceedings of the third ERTS symposium, Goddard Space Flight Center, December1973, NASASP 351 (pp. 309−317). Washington, DC: NASA.
[37]. Siahmansour R, kamali N. (2023) Changes in vegetation parameters due to fire (Case study: woody rangelands of Veysian site in Lorestan province). Journal of Rangeland; 16 (4): 845-830. [in Farsi]
[38]. sobhani, B. and mollanouri, E. (2024). Investigation of changes in vegetation cover using the NDVI index and its relationship with the Land surface temperature (case study: Kausar city). Journal of Environmental Science Studies9(3), 8851-8841. [in Farsi]
[39]. Sahebjalal, E., & Dashtekian, K. (2013). Analysis of land use-land covers changes using normalized difference vegetation index (NDVI) differencing and classification methods. African Journal of Agricultural Research8(37), 4614-4622.‏
[40]. Salas, E. A. L., & Henebry, G. M. (2013). A new approach for the analysis of hyperspectral data: Theory and sensitivity analysis of the Moment Distance Method. Remote sensing6(1), 20-41.‏
[41]. Singh, A (1989). Digital change detection techniques using remotely sensed data. International Journal of Remote Sensing, 10, 989–1003.
[42]. Sahebjalal, E. and Dashtekian, K., 2013. Analysis of land use-land covers changes using normalized difference vegetation index (NDVI) differencing and classification methods. African Journal of Agricultural Research8(37), pp.4614-4622.
[43]. Tung, F., & LeDrew, E. (1988). The determination of optimal threshold levels for change detection using various accuracy indexes. Photogrammetric Engineering and Remote Sensing54(10), 1449-1454.‏
[44]. Wu, Q.; Li, H.-Q.; Wang, R.-S.; Paulussen, J.; He, Y.; Wang, M.; Wang, B.-H.; Wang, Z. Monitoring and predicting land use change in Beijing using remote sensing and GIS. Landsc. Urban Plan. 2006, 78, 322–333.
[45]. Wachendorf M,Fricke T, Mo ¨ckel T. Remotesensing asa tool to assessbotanical composition, struc ture, quantity and quality of temperate grasslands. Grass Forage Sci. 2018; 73: 1–14.
[46]. Xue, J., & Su, B. (2017). Significant remote sensing vegetation indices: A review of developments and applications. Journal of sensors2017(1), 1353691.‏
[47]. Xue, S.Y., Xu, H.Y., Mu, C.C., Wu, T.H., Li, W.P., Zhang, W.X., Streletskaya, I., Grebenets, V., Sokratov, S., Kizyakov, A. & Wu, X.D. (2021). Changes in different land cover areas and NDVI values in northern latitudes from 1982 to 2015. Advances in Climate Change Research12(4), pp.456-465.
[48]. Yang, D., Yang, Z., Wen, Q., Ma, L., Guo, J., Chen, A., ... & Yang, X. (2024). Dynamic monitoring of aboveground
 
biomass in inner Mongolia grasslands over the past 23 Years using GEE and analysis of its driving forces. Journal of Environmental Management354, 120415.‏
[49]. Zhang, W., Wang, L., Xiang, F., Qin, W., & Jiang, W. (2020). Vegetation dynamics and the relations with climate change at multiple time scales in the Yangtze River and Yellow River Basin, China. Ecological Indicators110, 105892.‏
[50]. Zhen, Z., Chen, S., Yin, T., & Gastellu-Etchegorry, J. P. (2023). Globally quantitative analysis of the impact of atmosphere and spectral response function on 2-band enhanced vegetation index (EVI2) over Sentinel-2 and Landsat-8. ISPRS Journal of Photogrammetry and Remote Sensing205, 206-226..