[1]. Abunyewah, M., Okyere, S. A., Mensah, S. O., Erdiaw-Kwasie, M., Gajendran, T., & Byrne, M. K. (2024). Drought impact on peri-urban farmers’ mental health in semi-arid Ghana: The moderating role of personal social capital. Environmental Development, 49, 100960. doi: 10.1016/j.envdev.2023.100960
[2]. Adger, N., Agrawala, S., Mirza, M.M.Q., Conde, C.O., Brien, K., Pulhin, J., Pulwarty, R. Smit, B. & Takahashi, T. (2007). Assessment of adaptation practices, constraints and capacity. In: parry ml, canziani of, palutik of jp, vander linden pj, Hanson ce(eds) Climate Change2007; impacts, adaptation and vulnerability, Contribution of working group ii to the fourth assessment of the intergovernmental panel on climate change, Cambridge university press, Cambridge, 717- 743.
[3]. Agrawala, S., Barlow, M., Cullen, H., & Lyon, B. (2001). The drought and humanitarian crisis in central and southwest Asia: A climate perspective.
[4]. Alam, G. M., Alam, K., & Mushtaq, S. (2016). Influence of institutional access and social capital on adaptation decision: Empirical evidence from hazard-prone rural households in Bangladesh. Ecological Economics, 130, 243-251. doi: 10.1016/j.ecolecon.2016.07.012
[5]. Ali, S., Liu, Y., Ishaq, M., Shah, T., Abdullah, Ilyas, A., & Din, I. U. (2017). Climate change and its impact on the yield of major food crops: Evidence from Pakistan. Foods, 6(6), 39. doi: 10.3390/foods6060039
[6]. Aliyar, Q., Zulfiqar, F., Datta, A., Kuwornu, J. K., & Shrestha, S. (2022). Drought perception and field-level adaptation strategies of farming households in drought-prone areas of Afghanistan. International Journal of Disaster Risk Reduction, 72, 102862. doi: 10.1016/j.ijdrr.2022.102862
[7]. Antwi-Agyei, P., Amanor, K., Hogarh, J. N., & Dougill, A. J. (2021). Predictors of access to and willingness to pay for climate information services in north-eastern Ghana: A gendered perspective. Environmental Development, 37, 100580. doi: 10.1016/j.envdev.2020.100580.
[8]. Ashraf, M., & Routray, J. K. (2013). Perception and understanding of drought and coping strategies of farming households in north-west Balochistan. International Journal of Disaster Risk Reduction, 5, 49-60. doi: 10.1016/j.ijdrr.2013.05.002
[9]. Azizi khalkhili, T., Zamani, G., & Karami, E. (2016). Adaptation of farmers to climatic fluctuations: existing problems and obstacles and proposed solutions. Journal of Agricultural Economics and Development, 30(3), 148-159. doi: 10.22067/jead2.v30i3.42826 [in Farsi]
[10]. Babel, M. S., Chawrua, L., Khadka, D., Tingsanchali, T., & Shanmungam, M. S. (2024). Agricultural drought risk and local adaptation measures in the Upper Mun River Basin, Thailand. Agricultural Water Management, 292, 108655. doi: 10.1016/j.agwat.2023.108655
[11]. Bakhshandeh, S., Corneo, P. E., Yin, L., & Dijkstra, F. A. (2019). Drought and heat stress reduce yield and alter carbon rhizodeposition of different wheat genotypes. Journal of Agronomy and Crop Science, 205(2), 157-167. doi: 10.1111/jac.12314
[12]. Bates, B., Kundzewicz, Z., & Wu, S. (2008). Climate change and water. Intergovernmental Panel on Climate Change Secretariat.
[13]. Blair, P., & Buytaert, W. (2016). Socio-hydrological modelling: a review asking “why, what and how?”. Hydrology and Earth System Sciences, 20(1), 443-478. doi: 10.5194/hess-20-443-2016
[14]. Blauhut, V., Gudmundsson, L., & Stahl, K. (2015). Towards pan-European drought risk maps: quantifying the link between drought indices and reported drought impacts. Environmental Research Letters, 10(1), 014008. doi:10.1088/1748-9326/10/1/014008
[15]. Campbell, D., Barker, D., & McGregor, D. (2011). Dealing with drought: Small farmers and environmental hazards in southern St. Elizabeth, Jamaica. Applied geography, 31(1), 146-158. doi:10.1016/j.apgeog.2010.03.007
[16]. Campbell-Lendrum, D., & Corvalán, C. (2007). Climate change and developing-country cities: implications for environmental health and equity. Journal of Urban Health, 84, 109-117. doi: 10.1007/s11524-007-9170-x
[17]. Chenani, E., Yazdanpanah, M., Baradaran, M., Azizi-Khalkheili, T., & Najafabadi, M. M. (2021). Barriers to climate change adaptation: Qualitative evidence from southwestern Iran. Journal of Arid Environments, 189, 104487. doi: 10.1016/j.jaridenv.2021.104487
[18]. Connolly-Boutin, L., & Smit, B. (2016). Climate change, food security, and livelihoods in sub-Saharan Africa. Regional Environmental Change, 16, 385-399. doi: 10.1007/s10113-015-0761-x
[19]. Cooper, P. J., Dimes, J., Rao, K. P. C., Shapiro, B., Shiferaw, B., & Twomlow, S. (2008). Coping better with current climatic variability in the rain-fed farming systems of sub-Saharan Africa: An essential first step in adapting to future climate change?. Agriculture, ecosystems & environment, 126(1-2), 24-35. doi: 10.1016/j.agee.2008.01.007
[20]. Costello, A., Abbas, M., Allen, A., Ball, S., Bell, S., Bellamy, R., Friel, S., Groce, N., Johnson, A., Kett, M., Lee, M., Levy, C., Maslin, M., McCoy, D., McGuire, B., Montgomery, H., Napier, D., Pagel, C., Patel, J., de Oliveira, J. A., … Patterson, C. (2009). Managing the health effects of climate change: Lancet and University College London Institute for Global Health Commission. Lancet (London, England), 373(9676), 1693–1733. doi: 10.1016/S0140-6736(09)60935-1
[21]. Dai, A. (2011). Drought under global warming: a review. Wiley Interdisciplinary Reviews: Climate Change, 2(1), 45-65. doi: 10.1002/wcc.81
[22]. Drysdale, R. E., Moshabela, M., & Bob, U. (2021). ‘A creeping phenomenon’: the association between rainfall and household food insecurity in the district of iLembe, KwaZulu-Natal. Climate and development, 13(2), 128-138. doi: 10.1080/17565529.2020.1737795
[23]. FAO, I.F.A.D., UNICEF, W.H.O. (2017). The State of Food Security and Nutrition in the World 2017, first Ed. FAO, Rome, Italy.
[24]. Food and Agriculture Organization of the United Nations (FAO) (2016). South Africa, AQUASTAT. Available at: http://www.fao.org/nr/water/aquastat/countries_r egions/Profile_segments/ZAF-WU_eng.stm. (Accessed 12 December 2019).
[25]. Food and Agriculture Organization of the United Nations (FAO) (2008). Climate Change, Water and Food Security, Technical Background Document from the Expert Consultation, FAO, Rome, Italy.
[26]. Forouzani, M., Karami, E., & Zamani, G. H. (2012). Agricultural Water Poverty: The Impact of Knowledge and Technology [Doctoral dissertation, Ph.D. Thesis], Faculty of Agriculture, Shiraz University. [in Farsi]
[27]. Gbangou, T., Sarku, R., Slobbe, E. V., Ludwig, F., Kranjac-Berisavljevic, G., & Paparrizos, S. (2020). Coproducing weather forecast information with and for smallholder farmers in Ghana: Evaluation and design principles. Atmosphere, 11(9), 902. doi: 10.3390/atmos11090902
[28]. Guo, H., Wen, X., & Wu, Y. (2022). Drought risk assessment of farmers considering their planting behaviors and awareness: A case study of a County from China. Ecological Indicators, 137, 108728. doi: 10.1016/j.ecolind.2022.108728
[29]. Hawkins, P., Geza, W., Mabhaudhi, T., Sutherland, C., Queenan, K., Dangour, A., & Scheelbeek, P. (2022). Dietary and agricultural adaptations to drought among smallholder farmers in South Africa: a qualitative study. Weather and Climate Extremes, 35, 100413. doi: 10.1016/j.wace.2022.100413
[30]. Hou, L., Huang, J., & Wang, J. (2017). Early warning information, farmers’ perceptions of, and adaptations to drought in China. Climatic change, 141, 197-212. doi: 10.1007/s10584-017-1900-9
[31]. Huntingford, C., Hugo Lambert, F., Gash, J. H., Taylor, C. M., & Challinor, A. J. (2005). Aspects of climate change prediction relevant to crop productivity. Philosophical Transactions of the Royal Society B: Biological Sciences, 360(1463), 1999-2009. doi: 10.1098/rstb.2005.1748
[32]. Ifeanyi-obi, C.C., Etuk, U.R., & Jike-wai, O. (2012). Climate Change, Effects and Adaptation Strategies; Implication for Agricultural Extension System in Nigeria. Greener Journal of Agricultural Sciences, 2(2), 053-060. doi: 10.15580/GJAS.2013.3.1234
[33]. Jahantigh, H., Bakhshi, A., & Ghorbani Salkhordeh, R. (2022). Barriers and requirements for adaptation of farmers in mountainous areas to climate change, Case example: Papi section of Khorramabad city. Journal of Applied Researches in Geographical Sciences, 22(67), 281-300. doi: 10.52547/jgs.22.67.281 [in Farsi]
[34]. Karim, M. R., & Rahman, M. A. (2015). Drought risk management for increased cereal production in Asian least developed countries. Weather and Climate Extremes, 7, 24-35. doi: 10.1016/j.wace.2014.10.004
[35]. Klose, S. L. (2002). A decision support system for agricultural producers.
[36]. Madani, K., AghaKouchak, A., & Mirchi, A. (2016). Iran’s socio-economic drought: challenges of a water-bankrupt nation. Iranian studies, 49(6), 997-1016.doi: 10.1080/00210862.2016.1259286
[37]. Mase, A. S., & Prokopy, L. S. (2014). Unrealized potential: A review of perceptions and use of weather and climate information in agricultural decision making. Weather, Climate, and Society, 6(1), 47-61. doi: 10.1175/WCAS-D-12-00062.1
[38]. Mawejje, J. (2016). Food prices, energy and climate shocks in Uganda. Agricultural and Food. Economics, 4(1), 1-18 doi: 10.1186/s40100-016-0049-6
[39]. Mishra, A. K., & Singh, V. P. (2010). A review of drought concepts. Journal of hydrology, 391(1-2), 202-216. doi: 10.1016/j.jhydrol.2010.07.012
[40]. Myers, S. S., Smith, M. R., Guth, S., Golden, C. D., Vaitla, B., Mueller, N. D., Dangour, A. D., & Huybers, P. (2017). Climate Change and Global Food Systems: Potential Impacts on Food Security and Undernutrition. Annual review of public health, 38, 259–277. doi: 10.1146/annurev-publhealth-031816-044356.
[41]. Nkiaka, E., Taylor, A., Dougill, A. J., Antwi-Agyei, P., Fournier, N., Bosire, E. N., ... & Warnaars, T. (2019). Identifying user needs for weather and climate services to enhance resilience to climate shocks in sub-Saharan Africa. Environmental Research Letters, 14(12), 123003. doi: 10.1088/1748-9326/ab4dfe
[42]. Pan, Y., Zhu, Y., Lü, H., Yagci, A. L., Fu, X., Liu, E., ... & Liu, R. (2023). Accuracy of agricultural drought indices and analysis of agricultural drought characteristics in China between 2000 and 2019. Agricultural Water Management, 283, 108305. doi: 10.1016/j.agwat.2023.108305
[43]. Paparrizos, S., Kumar, U., Amjath-Babu, T. S., & Ludwig, F. (2021). Are farmers willing to pay for participatory climate information services? Insights from a case study in peri-urban Khulna, Bangladesh. Climate Services, 23, 100241. doi: 10.1016/j.cliser.2021.100241
[44]. Parry, M. L., Rosenzweig, C., Iglesias, A., Livermore, M., & Fischer, G. (2004). Effects of climate change on global food production under SRES emissions and socio-economic scenarios. Global environmental change, 14(1), 53-67. doi: 10.1016/j.gloenvcha.2003.10.008
[45]. Shokati Amghani, M., Mojtahedi, M., & Savari, M. (2023). An economic effect assessment of extension services of agricultural extension model sites for the irrigated wheat production in Iran. Scientific Reports, 13(1), 16947. doi: 10.1038/s41598-023-44290-5
[46]. Savari, M., & Shokati Amghani, M. (2019). Adaptation Strategies of Small Scale Farmers in Confronting Droughts in West Azerbaijan Province. Spatial Planning, 9(4), 17-42. doi: 10.22108/sppl.2019.116467.1373 [in Farsi]
[47]. Savari, M., & Moradi, M. (2022). The effectiveness of drought adaptation strategies in explaining the livability of Iranian rural households. Habitat International, 124, 102560. doi: 10.1016/j.habitatint.2022.102560
[48]. Savari, M., Zhoolideh, M., & Limuie, M. (2024). An analysis of the barriers to using climate information services to build a resilient agricultural system in Iran. Natural Hazards, 120(2), 1395-1419. doi: 10.1007/s11069-023-06255-9
[49]. Savari, M., Khaleghi, B., & Sheheytavi, A. (2024). Iranian farmers' response to the drought crisis: How can the consequences of drought be reduced?. International Journal of Disaster Risk Reduction, 114, 104910. doi: https://doi.org/10.1016/j.ijdrr.2024.104910
[50]. Savari, M., Zhoolideh, M., & Limuie, M. (2024). The combination of climate information services in the decision-making process of farmers to reduce climate risks: Application of social cognition theory. Climate Services, 35, 100500. doi: 10.1016/j.cliser.2024.100500
[51]. Savari, M., Damaneh, H. E., & Damaneh, H. E. (2024). Managing the effects of drought through the use of risk reduction strategy in the agricultural sector of Iran. Climate Risk Management, 100619. doi: 10.1016/j.crm.2024.100619
[52]. Savari, M., Jafari, A., & Sheheytavi, A. (2024). The impact of social capital to improve rural households’ resilience against flooding: evidence from Iran. Frontiers in Water, 6, 1393226. doi: 10.3389/frwa.2024.1393226.
[53]. Savari, M., Zhoolideh, M., & Limuie, M. (2024). Factors affecting the use of climate information services for agriculture: evidence from Iran. Climate Services, 33, 100438. doi: 10.1016/j.cliser.2023.100438
[54]. Savari, M., Sheheytavi, A., & Amghani, M. S. (2023). Factors underpinning Iranian farmers’ intention to conserve biodiversity at the farm level. Journal for Nature Conservation, 73, 126419. doi: 10.1016/j.jnc.2023.126419
[55]. Savari, M., Damaneh, H. E., & Damaneh, H. E. (2023). Effective factors to increase rural households' resilience under drought conditions in Iran. International Journal of Disaster Risk Reduction, 90, 103644. doi: 10.1016/j.ijdrr.2023.103644
[56]. Savari, M., Damaneh, H. E., & Damaneh, H. E. (2023). The effect of social capital in mitigating drought impacts and improving livability of Iranian rural households. International Journal of Disaster Risk Reduction, 89, 103630. doi: 10.1016/j.ijdrr.2023.103630
[57]. Savari, M., Ebrahimi-Maymand, R., & Mohammadi-Kanigolzar, F. (2013). The Factors influencing the application of organic farming operations by farmers in Iran. Agris on-line Papers in Economics and Informatics, 5(4), 179-187.
[58]. Savari, M., Shabanali Fami, H., Iravani, H., & Asadi, A. (2018). Collecting the strategies to stabilize the livelihood of small-scale farmers and training common strategies considering sustainability and vulnerability in drought conditions. Environmental Education and Sustainable Development, 6(3), 137-156.
[59]. Savari, M., & Abdeshahi, A. (2019). Analysis of the role of social capital to improve the resilience of rural households in drought conditions in the county of Divandarreh. Journal of Rural Research, 10(2), 214-229. doi: 10.22059/JRUR.2018.256365.1247
[60]. Wang, Y., Lv, J., Wang, Y., Sun, H., Hannaford, J., Su, Z. & Qu, Y. (2020). Drought risk assessment of spring maize based on APSIM crop model in Liaoning province, China. International Journal of Disaster Risk Reduction, 45, 101483. doi: 10.1016/j.ijdrr.2020.101483
[61]. Wens, M., Johnson, J. M., Zagaria, C., & Veldkamp, T. I. (2019). Integrating human behavior dynamics into drought risk assessment—A sociohydrologic, agent‐based approach. Wiley Interdisciplinary Reviews: Water, 6(4), e1345. doi: 10.1002/wat2.1345
[62]. Wilhite, D. A. (2000). Drought as a natural hazard: concepts and definitions, Imprint Routledge.
[63]. Wilhite, D. A., & Glantz, M. H. (1985). Understanding: the drought phenomenon: the role of definitions. Water international, 10(3), 111-120. doi: 10.1080/02508068508686328
[64]. World Meteorological Organization (WMO). (2021). Atlas of mortality and economic losses from weather, climate and water-related hazards. Weather, Clim. Water Extrem. 2021.
[65]. Yang, W., Zhang, L., & Gao, Y. (2023). Drought and flood risk assessment for rainfed agriculture based on Copula-Bayesian conditional probabilities. Ecological Indicators, 146, 109812. doi: 10.1016/j.ecolind.2022.109812
[66]. Yu, H., Wang, B., Zhang, Y. J., Wang, S., & Wei, Y. M. (2013). Public perception of climate change in China: results from the questionnaire survey. Natural hazards, 69, 459-472. doi: 10.1007/s11069-013-0711-1
[67]. Zargar, A., Sadiq, R., Naser, B., & Khan, F. I. (2011). A review of drought indices. Environmental Reviews, 19(NA), 333-349. doi: 10.1139/a11-013
[68]. Zhang, Q., Yu, H., Sun, P., Singh, V. P., & Shi, P. (2019). Multisource data based agricultural drought monitoring and agricultural loss in China. Global and planetary change, 172, 298-306. doi: 10.1016/j.gloplacha.2018.10.017
[69]. Ministry of Agriculture Jihad, (2023). Agricultural Statistics of Crops 1400-1401 (Vol. 1). Available at: https://www.maj.ir/page-amar/FA/65/form/pId3352
[70]. Statistical Center of Iran (2019). Report on the Status of Labor Migration in Iran. Available at: https://www.amar.org.ir
[71]. Savari, M., & Limuie, M. (2022). Development of Strategies to Reduce Rural-Urban Migration in Khuzestan Province Using the Combined SWOT-AHP Method. Journal of Population Association of Iran, 17(33), 237-268. doi: 10.22034/jpai.2022.555036.1232 [in Farsi].
[72]. Khuzestan Province Management and Planning Organization. (2022). Migration analysis with emphasis on Khuzestan Province based on the general population and housing census of 2016. Available at: https://www.mpo-kz.ir/uploads.
[73]. Badvi, A., Savari, M., & Sobhani, S. M. J. (2024). An Analysis of the Livability and the Migration Behavior of Rural Households in Drought Conditions: A Case Study of Bavi City. Journal of Population Association of Iran, 19(37), 293-324. doi: 10.22034/JPAI.2024.2023330.1335 [in Farsi].
[74]. Hosseini, S. K., Forouzani, M., & Abdeshahi, A. (2023). Investigating the effect of livelihood assets on diversity of villagers' livelihoods (the case of Bavi County). Iranian Journal of Agricultural Economics and Development Research, 54(2), 487-503. doi: 10.22059/ijaedr.2023.350022.669185 [in Farsi]
[75]. Savari, M., & Shehitzadeh, S. (2023). The role of social capital in the environmental protection of agricultural lands in dry areas (Case study: Bavi County). Journal of Arid Biome, 13(2), 53-69. doi: 10.29252/aridbiom.2024.20672.1958 [in Farsi]
[76]. Gangadharappa, H., Pramod, K., & Shiva, K. H. (2007). Gastric floating drug delivery systems: a review. Indian Journal of Pharmaceutical Education and Research, 41(4), 295-305.