تبیین برداشت کشاورزان از مفهوم خشکسالی و راهبردهای مقابله با آن در شهرستان باوی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 کارشناسی‌ارشد توسعه روستایی، دانشگاه علوم کشاورزی و منابع طبیعی خوزستان، ملاثانی، ایران

2 دانشیار گروه ترویج و آموزش کشاورزی، دانشگاه علوم کشاورزی و منابع طبیعی خوزستان، ملاثانی، ایران

3 استاد گروه ترویج و آموزش کشاورزی، دانشگاه علوم کشاورزی و منابع طبیعی خوزستان، ملاثانی، ایران

10.29252/aridbiom.2025.21317.2003

چکیده

این پژوهش با هدف کلی بررسی موانع سازگاری کشاورزان با خشکسالی انجام شد. جامعه آماری پژوهش شامل تمامی کشاورزان شهرستان ‏باوی بود. حجم نمونه با استفاده از جدول کرجسی و مورگان 350  نفر از کشاورزان با روش‏ نمونه‌‏گیری خوشه‌‏ای با انتساب متناسب برای مطالعه انتخاب شدند. ابزار اصلی پژوهش پرسشنامه‌‏ای محقق ساخت با مقیاس طیف لیکرت بود که روایی آن توسط گروه متخصصان موضوعی و پایایی آن توسط ضریب آلفای کرونباخ و پایایی ترکیبی تأیید شد که مقدار آلفای کرونباخ برای بخش موانع و راهبردهای سازگاری به ترتیب 820/0 و 780/0 بدست آمد. تجزیه و  تحلیل داده‌‏ها در دو بخش آمار توصیفی و استنباطی توسط نرم افزار‏های SPSS و Lisrel انجام شد. نتایج نشان داد که نزدیک به 50 درصد از کشاورزان مورد مطالعه درک درستی وضعیت خشکسالی، بارش و دما در منطقه نداشتند. علاوه بر این، نتایج نشان داد که دو راهبرد «تسطیح زمین» و «استفاده از دانش بومی» به عنوان مهم‌ترین راهبردهای سازگاری کشاورزان در برابر خشکسالی شناسایی شد. همچنین نتایج نشان داد دو مانع «عدم دسترسی به اطلاعات به موقع آب‌وهوایی» و «عدم‌دسترسی به منابع آب» به عنوان مهمترین موانع سازگاری کشاورزان در برابر خشکسالی شناسایی شد. در نهایت تحلیل عاملی تاییدی موانع سازگاری کشاورزان در شرایط خشکسالی را در عوامل اقتصادی، زیرساختی، فنی و اطلاعاتی و اجتماعی-انسانی طبقه‌‏بندی کرد. بر اساس نتایج پیشنهاد می‌‏شود جهت توسعه راهبردهای سازگاری حمایت‏‌های اقتصادی و آموزشی از کشاورزان به عمل آید.

کلیدواژه‌ها

موضوعات


[1]. Abunyewah, M., Okyere, S. A., Mensah, S. O., Erdiaw-Kwasie, M., Gajendran, T., & Byrne, M. K. (2024). Drought impact on peri-urban farmers’ mental health in semi-arid Ghana: The moderating role of personal social capital. Environmental Development49, 100960. doi: 10.1016/j.envdev.2023.100960
[2]. Adger, N., Agrawala, S., Mirza, M.M.Q., Conde, C.O., Brien, K., Pulhin, J., Pulwarty, R. Smit, B. & Takahashi, T. (2007). Assessment of adaptation practices, constraints and capacity. In: parry ml, canziani of, palutik of jp, vander linden pj, Hanson ce(eds) Climate Change2007; impacts, adaptation and vulnerability, Contribution of working group ii to the fourth assessment of the intergovernmental panel on climate change, Cambridge university press, Cambridge, 717- 743.
[3]. Agrawala, S., Barlow, M., Cullen, H., & Lyon, B. (2001). The drought and humanitarian crisis in central and southwest Asia: A climate perspective.
[4]. Alam, G. M., Alam, K., & Mushtaq, S. (2016). Influence of institutional access and social capital on adaptation decision: Empirical evidence from hazard-prone rural households in Bangladesh. Ecological Economics, 130, 243-251. doi: 10.1016/j.ecolecon.2016.07.012
[5]. Ali, S., Liu, Y., Ishaq, M., Shah, T., Abdullah, Ilyas, A., & Din, I. U. (2017). Climate change and its impact on the yield of major food crops: Evidence from Pakistan. Foods6(6), 39. doi: 10.3390/foods6060039
[6]. Aliyar, Q., Zulfiqar, F., Datta, A., Kuwornu, J. K., & Shrestha, S. (2022). Drought perception and field-level adaptation strategies of farming households in drought-prone areas of Afghanistan. International Journal of Disaster Risk Reduction72, 102862. doi: 10.1016/j.ijdrr.2022.102862
[7]. Antwi-Agyei, P., Amanor, K., Hogarh, J. N., & Dougill, A. J. (2021). Predictors of access to and willingness to pay for climate information services in north-eastern Ghana: A gendered perspective. Environmental Development, 37, 100580. doi: 10.1016/j.envdev.2020.100580.
[8]. Ashraf, M., & Routray, J. K. (2013). Perception and understanding of drought and coping strategies of farming households in north-west Balochistan. International Journal of Disaster Risk Reduction5, 49-60. doi: 10.1016/j.ijdrr.2013.05.002
[9]. Azizi khalkhili, T., Zamani, G., & Karami, E. (2016). Adaptation of farmers to climatic fluctuations: existing problems and obstacles and proposed solutions. Journal of Agricultural Economics and Development, 30(3), 148-159. doi: 10.22067/jead2.v30i3.42826 [in Farsi]
[10]. Babel, M. S., Chawrua, L., Khadka, D., Tingsanchali, T., & Shanmungam, M. S. (2024). Agricultural drought risk and local adaptation measures in the Upper Mun River Basin, Thailand. Agricultural Water Management292, 108655. doi: 10.1016/j.agwat.2023.108655
[11]. Bakhshandeh, S., Corneo, P. E., Yin, L., & Dijkstra, F. A. (2019). Drought and heat stress reduce yield and alter carbon rhizodeposition of different wheat genotypes. Journal of Agronomy and Crop Science205(2), 157-167. doi: 10.1111/jac.12314
[12]. Bates, B., Kundzewicz, Z., & Wu, S. (2008). Climate change and water. Intergovernmental Panel on Climate Change Secretariat.
[13]. Blair, P., & Buytaert, W. (2016). Socio-hydrological modelling: a review asking “why, what and how?”. Hydrology and Earth System Sciences20(1), 443-478. doi: 10.5194/hess-20-443-2016
[14]. Blauhut, V., Gudmundsson, L., & Stahl, K. (2015). Towards pan-European drought risk maps: quantifying the link between drought indices and reported drought impacts. Environmental Research Letters10(1), 014008. doi:10.1088/1748-9326/10/1/014008
[15]. Campbell, D., Barker, D., & McGregor, D. (2011). Dealing with drought: Small farmers and environmental hazards in southern St. Elizabeth, Jamaica. Applied geography31(1), 146-158. doi:10.1016/j.apgeog.2010.03.007
[16]. Campbell-Lendrum, D., & Corvalán, C. (2007). Climate change and developing-country cities: implications for environmental health and equity. Journal of Urban Health84, 109-117. doi: 10.1007/s11524-007-9170-x
[17]. Chenani, E., Yazdanpanah, M., Baradaran, M., Azizi-Khalkheili, T., & Najafabadi, M. M. (2021). Barriers to climate change adaptation: Qualitative evidence from southwestern Iran. Journal of Arid Environments189, 104487. doi: 10.1016/j.jaridenv.2021.104487
[18]. Connolly-Boutin, L., & Smit, B. (2016). Climate change, food security, and livelihoods in sub-Saharan Africa. Regional Environmental Change16, 385-399. doi: 10.1007/s10113-015-0761-x
[19]. Cooper, P. J., Dimes, J., Rao, K. P. C., Shapiro, B., Shiferaw, B., & Twomlow, S. (2008). Coping better with current climatic variability in the rain-fed farming systems of sub-Saharan Africa: An essential first step in adapting to future climate change?. Agriculture, ecosystems & environment126(1-2), 24-35. doi: 10.1016/j.agee.2008.01.007
[20]. Costello, A., Abbas, M., Allen, A., Ball, S., Bell, S., Bellamy, R., Friel, S., Groce, N., Johnson, A., Kett, M., Lee, M., Levy, C., Maslin, M., McCoy, D., McGuire, B., Montgomery, H., Napier, D., Pagel, C., Patel, J., de Oliveira, J. A., … Patterson, C. (2009). Managing the health effects of climate change: Lancet and University College London Institute for Global Health Commission. Lancet (London, England), 373(9676), 1693–1733. doi: 10.1016/S0140-6736(09)60935-1
[21]. Dai, A. (2011). Drought under global warming: a review. Wiley Interdisciplinary Reviews: Climate Change2(1), 45-65. doi: 10.1002/wcc.81
[22]. Drysdale, R. E., Moshabela, M., & Bob, U. (2021). ‘A creeping phenomenon’: the association between rainfall and household food insecurity in the district of iLembe, KwaZulu-Natal. Climate and development13(2), 128-138. doi: 10.1080/17565529.2020.1737795
[23]. FAO, I.F.A.D., UNICEF, W.H.O. (2017). The State of Food Security and Nutrition in the World 2017, first Ed. FAO, Rome, Italy.
[24]. Food and Agriculture Organization of the United Nations (FAO) (2016). South Africa, AQUASTAT. Available at: http://www.fao.org/nr/water/aquastat/countries_r egions/Profile_segments/ZAF-WU_eng.stm. (Accessed 12 December 2019).
[25]. Food and Agriculture Organization of the United Nations (FAO) (2008). Climate Change, Water and Food Security, Technical Background Document from the Expert Consultation, FAO, Rome, Italy.
[26]. Forouzani, M., Karami, E., & Zamani, G. H. (2012). Agricultural Water Poverty: The Impact of Knowledge and Technology [Doctoral dissertation, Ph.D. Thesis], Faculty of Agriculture, Shiraz University. [in Farsi]
[27]. Gbangou, T., Sarku, R., Slobbe, E. V., Ludwig, F., Kranjac-Berisavljevic, G., & Paparrizos, S. (2020). Coproducing weather forecast information with and for smallholder farmers in Ghana: Evaluation and design principles. Atmosphere11(9), 902. doi: 10.3390/atmos11090902
[28]. Guo, H., Wen, X., & Wu, Y. (2022). Drought risk assessment of farmers considering their planting behaviors and awareness: A case study of a County from China. Ecological Indicators137, 108728. doi: 10.1016/j.ecolind.2022.108728
[29]. Hawkins, P., Geza, W., Mabhaudhi, T., Sutherland, C., Queenan, K., Dangour, A., & Scheelbeek, P. (2022). Dietary and agricultural adaptations to drought among smallholder farmers in South Africa: a qualitative study. Weather and Climate Extremes35, 100413. doi: 10.1016/j.wace.2022.100413
[30]. Hou, L., Huang, J., & Wang, J. (2017). Early warning information, farmers’ perceptions of, and adaptations to drought in China. Climatic change141, 197-212. doi: 10.1007/s10584-017-1900-9
[31]. Huntingford, C., Hugo Lambert, F., Gash, J. H., Taylor, C. M., & Challinor, A. J. (2005). Aspects of climate change prediction relevant to crop productivity. Philosophical Transactions of the Royal Society B: Biological Sciences360(1463), 1999-2009. doi: 10.1098/rstb.2005.1748
[32]. Ifeanyi-obi, C.C., Etuk, U.R., & Jike-wai, O. (2012). Climate Change, Effects and Adaptation Strategies; Implication for Agricultural Extension System in Nigeria. Greener Journal of Agricultural Sciences, 2(2), 053-060. doi: 10.15580/GJAS.2013.3.1234
[33]. Jahantigh, H., Bakhshi, A., & Ghorbani Salkhordeh, R. (2022). Barriers and requirements for adaptation of farmers in mountainous areas to climate change, Case example: Papi section of Khorramabad city. Journal of Applied Researches in Geographical Sciences, 22(67), 281-300. doi: 10.52547/jgs.22.67.281 [in Farsi]
[34]. Karim, M. R., & Rahman, M. A. (2015). Drought risk management for increased cereal production in Asian least developed countries. Weather and Climate Extremes7, 24-35. doi: 10.1016/j.wace.2014.10.004
[35]. Klose, S. L. (2002). A decision support system for agricultural producers.
[36]. Madani, K., AghaKouchak, A., & Mirchi, A. (2016). Iran’s socio-economic drought: challenges of a water-bankrupt nation. Iranian studies, 49(6), 997-1016.doi: 10.1080/00210862.2016.1259286
[37]. Mase, A. S., & Prokopy, L. S. (2014). Unrealized potential: A review of perceptions and use of weather and climate information in agricultural decision making. Weather, Climate, and Society6(1), 47-61. doi: 10.1175/WCAS-D-12-00062.1
[38]. Mawejje, J. (2016). Food prices, energy and climate shocks in Uganda. Agricultural and Food. Economics, 4(1), 1-18 doi: 10.1186/s40100-016-0049-6
[39]. Mishra, A. K., & Singh, V. P. (2010). A review of drought concepts. Journal of hydrology391(1-2), 202-216. doi: 10.1016/j.jhydrol.2010.07.012
[40]. Myers, S. S., Smith, M. R., Guth, S., Golden, C. D., Vaitla, B., Mueller, N. D., Dangour, A. D., & Huybers, P. (2017). Climate Change and Global Food Systems: Potential Impacts on Food Security and Undernutrition. Annual review of public health, 38, 259–277. doi: 10.1146/annurev-publhealth-031816-044356.
[41]. Nkiaka, E., Taylor, A., Dougill, A. J., Antwi-Agyei, P., Fournier, N., Bosire, E. N., ... & Warnaars, T. (2019). Identifying user needs for weather and climate services to enhance resilience to climate shocks in sub-Saharan Africa. Environmental Research Letters14(12), 123003. doi: 10.1088/1748-9326/ab4dfe
[42]. Pan, Y., Zhu, Y., Lü, H., Yagci, A. L., Fu, X., Liu, E., ... & Liu, R. (2023). Accuracy of agricultural drought indices and analysis of agricultural drought characteristics in China between 2000 and 2019. Agricultural Water Management283, 108305. doi: 10.1016/j.agwat.2023.108305
[43]. Paparrizos, S., Kumar, U., Amjath-Babu, T. S., & Ludwig, F. (2021). Are farmers willing to pay for participatory climate information services? Insights from a case study in peri-urban Khulna, Bangladesh. Climate Services23, 100241. doi: 10.1016/j.cliser.2021.100241
[44]. Parry, M. L., Rosenzweig, C., Iglesias, A., Livermore, M., & Fischer, G. (2004). Effects of climate change on global food production under SRES emissions and socio-economic scenarios. Global environmental change14(1), 53-67. doi: 10.1016/j.gloenvcha.2003.10.008
[45]. Shokati Amghani, M., Mojtahedi, M., & Savari, M. (2023). An economic effect assessment of extension services of agricultural extension model sites for the irrigated wheat production in Iran. Scientific Reports, 13(1), 16947. doi: 10.1038/s41598-023-44290-5
[46]. Savari, M., & Shokati Amghani, M. (2019). Adaptation Strategies of Small Scale Farmers in Confronting Droughts in West Azerbaijan Province. Spatial Planning, 9(4), 17-42. doi: 10.22108/sppl.2019.116467.1373 [in Farsi]
[47]. Savari, M., & Moradi, M. (2022). The effectiveness of drought adaptation strategies in explaining the livability of Iranian rural households. Habitat International124, 102560. doi: 10.1016/j.habitatint.2022.102560
[48]. Savari, M., Zhoolideh, M., & Limuie, M. (2024). An analysis of the barriers to using climate information services to build a resilient agricultural system in Iran. Natural Hazards, 120(2), 1395-1419. doi: 10.1007/s11069-023-06255-9
[49]. Savari, M., Khaleghi, B., & Sheheytavi, A. (2024). Iranian farmers' response to the drought crisis: How can the consequences of drought be reduced?. International Journal of Disaster Risk Reduction114, 104910. doi: https://doi.org/10.1016/j.ijdrr.2024.104910
[50]. Savari, M., Zhoolideh, M., & Limuie, M. (2024). The combination of climate information services in the decision-making process of farmers to reduce climate risks: Application of social cognition theory. Climate Services35, 100500. doi: 10.1016/j.cliser.2024.100500
 [51]. Savari, M., Damaneh, H. E., & Damaneh, H. E. (2024). Managing the effects of drought through the use of risk reduction strategy in the agricultural sector of Iran. Climate Risk Management, 100619. doi: 10.1016/j.crm.2024.100619
[52]. Savari, M., Jafari, A., & Sheheytavi, A. (2024). The impact of social capital to improve rural households’ resilience against flooding: evidence from Iran. Frontiers in Water6, 1393226. doi: 10.3389/frwa.2024.1393226.
[53]. Savari, M., Zhoolideh, M., & Limuie, M. (2024). Factors affecting the use of climate information services for agriculture: evidence from Iran. Climate Services33, 100438. doi: 10.1016/j.cliser.2023.100438
[54]. Savari, M., Sheheytavi, A., & Amghani, M. S. (2023). Factors underpinning Iranian farmers’ intention to conserve biodiversity at the farm level. Journal for Nature Conservation73, 126419. doi: 10.1016/j.jnc.2023.126419
[55]. Savari, M., Damaneh, H. E., & Damaneh, H. E. (2023). Effective factors to increase rural households' resilience under drought conditions in Iran. International Journal of Disaster Risk Reduction90, 103644. doi: 10.1016/j.ijdrr.2023.103644
[56]. Savari, M., Damaneh, H. E., & Damaneh, H. E. (2023). The effect of social capital in mitigating drought impacts and improving livability of Iranian rural households. International Journal of Disaster Risk Reduction89, 103630. doi: 10.1016/j.ijdrr.2023.103630
[57]. Savari, M., Ebrahimi-Maymand, R., & Mohammadi-Kanigolzar, F. (2013). The Factors influencing the application of organic farming operations by farmers in Iran. Agris on-line Papers in Economics and Informatics, 5(4), 179-187.
[58]. Savari, M., Shabanali Fami, H., Iravani, H., & Asadi, A. (2018). Collecting the strategies to stabilize the livelihood of small-scale farmers and training common strategies considering sustainability and vulnerability in drought conditions. Environmental Education and Sustainable Development6(3), 137-156.
 [59]. Savari, M., & Abdeshahi, A. (2019). Analysis of the role of social capital to improve the resilience of rural households in drought conditions in the county of Divandarreh. Journal of Rural Research10(2), 214-229. doi: 10.22059/JRUR.2018.256365.1247
[60]. Wang, Y., Lv, J., Wang, Y., Sun, H., Hannaford, J., Su, Z. & Qu, Y. (2020). Drought risk assessment of spring maize based on APSIM crop model in Liaoning province, China. International Journal of Disaster Risk Reduction45, 101483. doi: 10.1016/j.ijdrr.2020.101483
[61]. Wens, M., Johnson, J. M., Zagaria, C., & Veldkamp, T. I. (2019). Integrating human behavior dynamics into drought risk assessment—A sociohydrologic, agent‐based approach. Wiley Interdisciplinary Reviews: Water6(4), e1345. doi: 10.1002/wat2.1345
[62]. Wilhite, D. A. (2000). Drought as a natural hazard: concepts and definitions, Imprint Routledge.
[63]. Wilhite, D. A., & Glantz, M. H. (1985). Understanding: the drought phenomenon: the role of definitions. Water international10(3), 111-120. doi: 10.1080/02508068508686328
[64]. World Meteorological Organization (WMO). (2021). Atlas of mortality and economic losses from weather, climate and water-related hazards. Weather, Clim. Water Extrem. 2021.
[65]. Yang, W., Zhang, L., & Gao, Y. (2023). Drought and flood risk assessment for rainfed agriculture based on Copula-Bayesian conditional probabilities. Ecological Indicators146, 109812. doi: 10.1016/j.ecolind.2022.109812
[66]. Yu, H., Wang, B., Zhang, Y. J., Wang, S., & Wei, Y. M. (2013). Public perception of climate change in China: results from the questionnaire survey. Natural hazards69, 459-472. doi: 10.1007/s11069-013-0711-1
[67]. Zargar, A., Sadiq, R., Naser, B., & Khan, F. I. (2011). A review of drought indices. Environmental Reviews19(NA), 333-349. doi: 10.1139/a11-013
[68]. Zhang, Q., Yu, H., Sun, P., Singh, V. P., & Shi, P. (2019). Multisource data based agricultural drought monitoring and agricultural loss in China. Global and planetary change172, 298-306. doi: 10.1016/j.gloplacha.2018.10.017
[69]. Ministry of Agriculture Jihad, (2023). Agricultural Statistics of Crops 1400-1401 (Vol. 1). Available at: https://www.maj.ir/page-amar/FA/65/form/pId3352
 [70]. Statistical Center of Iran (2019). Report on the Status of Labor Migration in Iran. Available at: https://www.amar.org.ir
[71]. Savari, M., & Limuie, M. (2022). Development of Strategies to Reduce Rural-Urban Migration in Khuzestan Province Using the Combined SWOT-AHP Method. Journal of Population Association of Iran, 17(33), 237-268. doi: 10.22034/jpai.2022.555036.1232 [in Farsi].
[72]. Khuzestan Province Management and Planning Organization. (2022). Migration analysis with emphasis on Khuzestan Province based on the general population and housing census of 2016. Available at: https://www.mpo-kz.ir/uploads.
[73]. Badvi, A., Savari, M., & Sobhani, S. M. J. (2024). An Analysis of the Livability and the Migration Behavior of Rural Households in Drought Conditions: A Case Study of Bavi City. Journal of Population Association of Iran19(37), 293-324. doi: 10.22034/JPAI.2024.2023330.1335 [in Farsi].
[74]. Hosseini, S. K., Forouzani, M., & Abdeshahi, A. (2023). Investigating the effect of livelihood assets on diversity of villagers' livelihoods (the case of Bavi County). Iranian Journal of Agricultural Economics and Development Research, 54(2), 487-503. doi: 10.22059/ijaedr.2023.350022.669185 [in Farsi]
[75]. Savari, M., & Shehitzadeh, S. (2023). The role of social capital in the environmental protection of agricultural lands in dry areas (Case study: Bavi County). Journal of Arid Biome, 13(2), 53-69. doi: 10.29252/aridbiom.2024.20672.1958 [in Farsi]
[76]. Gangadharappa, H., Pramod, K., & Shiva, K. H. (2007). Gastric floating drug delivery systems: a review. Indian Journal of Pharmaceutical Education and Research, 41(4), 295-305.