بررسی زوال بلوط در رابطه با تنوع گونه‌‌های چوبی، خصوصیات خاک و عوامل فیزیوگرافی در جنگل‌های زاگرس جنوبی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی‌ارشد جنگلداری، دانشکده کشاورزی، دانشگاه ایلام، ایلام، ایران

2 دانشیار گروه علوم جنگل، دانشگاه ایلام، ایلام، ایران

3 محقق بخش تحقیقات جنگلها، مراتع و آبخیزداری، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان ایلام، سازمان تحقیقات، آموزش و ترویج کشاورزی، ایلام، ایران

10.29252/aridbiom.2024.21417.2006

چکیده

پژوهش حاضر با هدف بررسی زوال بلوط در رابطه با تنوع گونه‌های چوبی، خصوصیات خاک و عوامل فیزیوگرافی در منطقه بانکول استان ایلام انجام  شده است. این مطالعه در دو جهت دامنه شمالی و شرقی و در سه طبقه ارتفاعی (1340-1440، 1440-1540 و بیشتر از 1540 متر از سطح دریا) و با برداشت قطعات نمونه 1000 مترمربعی دایره‌ای انجام شد. در قطعات نمونه، تنوع گونه‌های چوبی و درصد خشکیدگی پایه‌های بلوط بررسی و ثبت شد. نمونه‌های خاک از عمق صفر تا 30 سانتیمتری برداشت شد. بررسی اثر عوامل توپوگرافی بر خصوصیات خاک، تنوع گونه‌ای و میزان خشکیدگی با استفاده از آنالیز واریانس دوطرفه و مقایسه میانگین‌ها با آزمون چند دامنه‌ای دانکن انجام گرفت. رابطۀ شاخص‌های تنوع، خصوصیات خاک و خشکیدگی در طبقات ارتفاعی در هر جهت دامنه با استفاده از تحلیل مؤلفه‌های اصلی (PCA) بررسی شد. نتایج نشان دادند که ارتفاع از سطح دریا و جهت دامنه بر خصوصیات خاک، تنوع گونه‌های چوبی و میزان خشکیدگی درختان اثر معنی‌داری دارند. بر اساس نتایج، میزان ماده آلی در جهت شمالی بیشتر از جهت شرقی بود. بیشترین میزان نیتروژن کل در طبقات ارتفاعی 1440-1540 و بیشتر از 1540 متر در جهت شمالی و کمترین میزان آن در طبقه ارتفاعی 1340-1440 متر از سطح دریا در جهت شرقی بود. مقدار فسفر در جهت شمالی و در طبقه ارتفاعی 1440-1540 از سطح دریا بیشترین میزان را نشان داد. شاخص‌های تنوع شانون وینر و سیمپسون و غنای گونه‌های چوبی در جهت شمالی و طبقات ارتفاعات میانی و بالا بیشتر از طبقه ارتفاعی پایین بود. بیشترین میزان خشکیدگی در طبقه ارتفاعی بالاتر از1540 متر در هر دو جهت شمالی (88/9 درصد) و شرقی (55/10 درصد) مشاهده شد و کمترین میزان آن در طبقه ارتفاع از سطح دریای میانی جهت شمالی و شرقی ثبت شد. براساس نتایج در هر دو جهت شمالی و شرقی، خشکیدگی بلوط با الگویی مشابه در طبقه ارتفاعی بالاتر بیشتر است و این موقعیت‌ها باید در اولویت حفاظت، احیا و عملیات های پرورشی مرتبط با این پدیده قرار گیرند.

کلیدواژه‌ها

موضوعات


[1]. Amir Ahmadi, B., Zolfaghari, R., & Mirzaei, M. R. (2015). Relation between Dieback of Quercus brantii Lindl. Trees with Ecological and Sylvicultural Factors, (Study Area: Dena Protected Area). Ecology of Iranian Forests, 3(6), 19-27. [in Farsi]
[2]. Armenteras, D., Dávalos, L.M., Barreto, J.S., Miranda, A., Hernández-Moreno, A., Zamorano-Elgueta, C., González-Delgado, T.M., Meza-Elizalde, M.C., & Retana, J. (2021). Fire-induced loss of the world’s most biodiverse forests in Latin America, Science Advances, 7(33), eabd3357. doi: 10.1126/sciadv.abd3357
[3]. Atashgahi, Z., Ejtehadi, H., & Zare, H. (2015). Plant species diversity in relation to topography in the east of Dodangeh forests, Mazandaran province, Iran. Journal of Plant Research (Iranian Journal of Biology), 28(1), 1-11. [in Farsi]
[4]. Auclair, A. N. D., Heilman, W. E., & Brinkman, B. (2010). Predicting forest dieback in Maine, USA: a simple model based on soil frost and drought, Canadian journal of forest research, 40(4), 687-702. doi: 10.1139/X10-023
[5]. Azim Nejad, Z., Badehian, Z., Rezaei Nejad, A. & Bazot, S. (2021). Do soil properties and ecophysiological responses of oak (Quercus brantii Lindl.) correlate with the rate of dieback, Trees, 35(5), 1639-1650. doi: 10.1007/s00468-021-02142-7
[6]. Badano, E. I., Cavieres, L. A., Molina-Montenegro, M. A., & Quiroz, C. L. (2005). (2005). Slope aspect influences plant association pattern in the Mediterranean natural of central Chile, Journal of Arid Environments, 62(1), 93-108. doi: 10.1016/j.jaridenv.2004.10.012
[7]. Bayat, H., Sheklabadi, M., Moradhaseli, M., & Ebrahimi, E. (2017). Effects of slope aspect, grazing, and sampling position on the soil penetration resistance curve, Geoderma, 303, 150-164. doi: 10.1016/j.geoderma.2017.05.003
[8]. Bhatt, R. P. (2023). Achievement of SDGS globally in biodiversity conservation and reduction of greenhouse gas emissions by using green energy and maintaining forest cover. GSC Advanced Research and Reviews, 17(3), 1-21. doi: 10.30574/gscarr.2023.17.3.0421
[9]. Bouyoucos, G. J. (1962). Hydrometer method improved for making particle size analysis of soils, Agronomy Journal, 54, 464- 465. doi: 10.2134/agronj1962.00021962005400050028x
[10]. Chakraborty, T., Saha, S., Matzarakis, A., & Reif, A. (2017). Influence of multiple biotic and abiotic factors on the crown die-back of European beech trees at their drought limit. Flora, 229, 58-70. doi: 10.1016/j.flora.2017.02.012
[11]. Conforti, M., Longobucco, T., Scarciglia, F., Niceforo, G., Matteucci, G., & Buttafuoco, G. (2020). Interplay between soil formation and geomorphic processes along a soil catena in a Mediterranean mountain landscape: an integrated pedological and geophysical approach. Environmental Earth Sciences, 79, 1-16. doi: 10.1007/s12665-019-8802-2
[12]. Cui, W., & Zheng, X.-X. (2016). Spatial Heterogeneity in Tree Diversity and Forest Structure of Evergreen Broadleaf Forests in Southern China along an Altitudinal Gradient. Forests7(10), 216. doi: 10.3390/f7100216
[13]. Dallahi, Y., Boujraf, A., Meliho, M., & Orlando, C.A. (2023). Assessment of forest dieback on the Moroccan Central Plateau using spectral vegetation indices. Journal of Forestry Research, 34(3), 793-808. doi: 10.1007/s11676-022-01525-x
[14]. Denman, S., Brown, N., Kirk, S., Jeger, M., & Webber, J. (2014). A description of the symptoms of Acute Oak Decline in Britain and a comparative review on causes of similar disorders on oak in Europe. Forestry: An International Journal of Forest Research, 87(4), 535-551. doi: 10.1093/forestry/cpu010
[15]. Dezhem Khoi, M. (2014). The effect of some physiographic factors on tree and shrub diversity in Zardlan region of Ilam province [MSc dissertation, Islamic Azad University of Ilam branch]. [in Farsi]
[16]. Dong, J., Zhou, K., Jiang, P., Wu, J., & Fu, W. (2021). Revealing horizontal and vertical variation of soil organic carbon, soil total nitrogen and C:N ratio in subtropical forests of southeastern China. Journal of Environmental Management, 289, 112483. doi: 10.1016/j.jenvman.2021.11248
[17]. Fan, B., Tao, W., Qin, G., Hopkins, I., Zhang, Y., Wang, Q., Lin, H., & Guo, L. (2020). Soil micro-climate variation in relation to slope aspect, position, and curvature in a forested catchment. Agricultural and Forest Meteorology, 290, 107999. doi: 10.1016/j.agrformet.2020.107999
[18]. Farokhzadeh, B., Ghasemi, B., Ataeian, B., & Akhzari, D. (2023). Effective Physiological parameters and some physio-chemical parameters on soil organic carbon storage in Gonbad rangelands, Journal of Rangeland, 16(4), 846-859. [in Farsi]
[19]. Gao, Y., Skutsch, M., Paneque-Gálvez, J., & Ghilardi, A. (2020). Remote sensing of forest degradation: a review. Environmental Research Letters, 15(10), 103001. doi: 10.1088/1748-9326/abaad7
[20]. Ghadirian, O., Hemami, M. R., Soffianian, A., Pourmanaphi, S., Malekian, M., & Tarkesh, M. (2018). Probabilistic prediction of forest decline in Lorestan province using a combined modeling approach. Iranian Journal of Forest and Range Protection Research, 15(2), 131-146. [in Farsi]
[21]. Gheitury, M., Heshmati, M., Noroozi, A., Ahmadi, M., & Parvizi, Y. (2020). Monitoring mortality in a semiarid forest under the influence of prolonged drought in Zagros region. International Journal of Environmental Science and Technology, 17(11), 4589-4600. doi: 10.1007/s13762-020-02638-8
[22]. Hamzehpour, M., Kia-daliri, H., & Bordbar. K. (2011). Preliminary study of manna oak (Quercus brantii Lindl.) tree decline in Dashte-Barm of Kazeroon, Fars province, Iranian Journal of Forest and Poplar Research, 19(2), 352-363. doi: 10.22092/ijfpr.2011.107578 [in Farsi]
[23]. Heydari, M., Cheraghi, J., Omidipour, R., Mirab-balou, M., & Pothier, D. (2021). Beta diversity of plant community and soil mesofauna along an elevational gradient in a mountainous semi-arid oak forest. Community Ecology, 22, 165-176. doi: 10.1007/s42974-021-00046-7
[24]. Hosseini, A. (2014). Effects of some of Persian oak tree and stand characteristics on crown dieback rate in oak forests of medium Zagros. Journal of Zagros Forests Researches, 1(1), 37-50. [in Farsi]
[25]. Hosseini, A., Hosseini, S.M., & Linares, J.C. (2017). Site factors and stand conditions associated with Persian oak decline in zagros mountain forests. Forest systems, 26(3), e014. doi: 10.5424/fs/2017263-11298 [in Farsi]
[26]. Hosseini, A., Matinizadeh, M., Pourhashemi, M., & Asgari, S. (2021). Effect of slope aspect and crown dieback intensity on leaf and soil nutrient status in Persian oak stands, Quercus brantii Lindl. (Case study, Melah-Siah forests, Ilam province). Iranian Journal of Forest and Range Protection Research, 19(2), 354-367. doi: 10.22092/ijfrpr.2021.354903.1494 [in Farsi]
[27]. Hosseinzadeh, J., & Pourhashemi, M. (2015). An investigation on the relationship between crown indices and the severity of oak forests decline in Ilam. Iranian Journal of Forest, 7(1), 55-66. [in Farsi]
[28]. Jafari Haghighi, M. (2003). Soil analysis methods: sampling and important physical and chemical analyzes with emphasis on theoretical and practical principles, Nedaye Zoha press. [in Farsi]
[29]. Jafareiyan, N., Mirzaei, J., Moradi, M., & Heydari, M. (2017). Environmental characteristics and ordination of woody plant species and their relation with environmental factors in Ilam forest. Journal of Wood and Forest Science and Technology, 24(3), 81-94. doi: 10.22069/jwfst.2017.13123.1673 [in Farsi]
[30]. Jiang, P., & Thelen, K. D. (2004). Effect of soil and topographic properties on crop yield in a North-central corn-soybean cropping system, Agronomy Journal, 96(1), 252-258. doi: 10.2134/agronj2004.0252
[31]. Jucker, T., Bongalov, B., Burslem, D.F., Nilus, R., Dalponte, M., Lewis, S.L., Phillips, O.L., Qie, L., & Coomes, D.A. (2018). Topography shapes the structure, composition and function of tropical forest landscapes, Ecology letters, 21(7), 989-1000. doi: 10.1111/ele.12964
[32]. Kalra, Y. P., & Maynard, D. G. (1991). Methods Manual for Forest Soil and Plant Analysis, Information Report NOR-X-319, Forestry Canada.
[33]. Karami, J., Kavosi, M., & Babanezhad, M. (2015). Assessing the relationship between some environmental variables and spread of charcoal disease on chestnut-leaved oak (Quercus castaneifolia CA Mey). Iranian Journal of Forest and Range Protection Research, 13(1), 34-45. doi: 10.22092/ijfrpr.2015.102391 [in Farsi]
[34]. Karami, M., Sheykholeslami, A., Heydari, M., Nimvari, M.E., Omidipour, R., & Prevosto, B. (2022). Taxonomic and structural diversity indices predict soil carbon storage better than functional diversity indices along a dieback intensity gradient in semi-arid oak forests. Trees, 36, 537–551. doi: 10.1007/s00468-021-02227-3
[35]. Lakkana, T., Ashton, M.S., Hooper, E.R., Perera, A., & Ediriweera, S. (2022). Tropical montane forest in South Asia: Composition, structure, and dieback in relation to soils and topography, Ecosphere, 13(5), e4049. doi: 10.1002/ecs2.4049
[36]. Lal, R. (2004). Soil carbon sequestration to mitigate climate change, Geoderma, 123(1-2), 1-22. doi: 10.1016/j.geoderma.2004.01.032
[37]. Magurran, A. E., & McGill, B. J. (2011). Biological Diversity: Frontiers in Measurement and Assessment, Oxford University Press.
[38]. Mazzei, A., Bonacci, T., Horák, J., & Brandmayr, P. (2018). The role of topography, stand and habitat features for management and biodiversity of a prominent forest hotspot of the Mediterranean Basin: Saproxylic beetles as possible indicators, Forest Ecology and Management, 410, 66-75. doi: 10.1016/j.foreco.2017.12.039
[39]. Mirhashemi, H., Heydari, M., Karami, O., Ahmadi, K., & Mosavi, A. (2023). Modeling Climate Change Effects on the Distribution of Oak Forests with Machine Learning. Forests, 14(3), 469. doi: 10.3390/f14030469
[40]. Mirjalili, A., Zarekia, S., & Jafarian Jeloudar, Z. (2021). Effect of topographic on species richness and diversity in desert and arid rangelands (Case study: Tang_e Laybid rangelands of Yazd). Management of Natural Ecosystems, 1(1), 26-36. doi: 10.22034/emj.2021.248918 [in Farsi]
[41]. Mirzaei, J., Heydari, M., & Prévosto, B. (2017). Effects of vegetation patterns and environmental factors on woody regeneration in semi-arid oak-dominated forests of western Iran, Journal of Arid Land, 9, 368-378. doi: 10.1007/s40333-017-0013-7
[42]. Oliver, P. A. T. (2015). Patterns of shrub diversity and tree regeneration across topographic and stand-structural gradients in a Mediterranean forest, Forest systems, 24(1), e-011. doi: 10.5424/fs/2015241-05887.
[43]. Olsen, S. R., Cole, C. V., Watanabe, F. S., & Dean, L. A. (1954). Estimation of available phosphorus in soils by extraction with sodium bicarbonate, Circular (USDA), 939, 1-19.
[44]. Pavlov, I. N. (2015). Biotic and abiotic factors as causes of coniferous forests dieback in Siberia and Far East. Contemporary problems of ecology, 8, 440-456. doi: 10.1134/S1995425515040125
[45]. Pourbabaei, H., & Haghgooy, T. (2013). Effect of physiographical factors on tree species diversity (case study: Kandelat Forest Park). Iranian Journal of Forest and Poplar Research, 21(2), 243-255. doi: 10.22092/ijfpr.2013.3855 [in Farsi]
[46]. Salehi, A., Zarinkafsh, M., Zahedi Amiri, G., & Marvi Mohajer, R. (2005). A Study of Soil Physical and Chemical Properties in Relation to Tree Ecological Groups in Nam-Khaneh District Of Kheirood-Kenar Forest. Iranian Journal of Natural Resources, 58(3), 567-578. [in Farsi]
[47]. Scott, P.M., Shearer, B.L., Barber, P.A. & Hardy, G.S.J. (2013). Relationships between the crown health, fine root and ectomycorrhizae density of declining Eucalyptus gomphocephala. Australasian Plant Pathology, 42(2), 121-131. doi: 10.1007/s13313-012-0152-4
[48]. Sharma, N., & Kala, C. P. (2022). Patterns in plant species diversity along the altitudinal gradient in Dhauladhar mountain range of the North-West Himalaya in India. Trees, Forests and People, 7, 100196. doi: 10.1016/j.tfp.2022.100196
[49]. Shahooei, S. (Trans.) (2006). The Nature and Properties of Soils, 13th Edition (R. R. Weil & N. C. Brady), (Original work published 2002). University of Kurdistan Press. [in Farsi]
[50]. Shi, W. Y., Du, S., Morina, J. C., Guan, J. H., Wang, K. B., Ma, M. G., Yamanaka, N., & Tateno, R. (2017). Physical and biogeochemical controls on soil respiration along a topographical gradient in a semiarid forest. Agricultural and Forest Meteorology, 247, 1-11. doi: 10.1016/j.agrformet.2017.07.006
[51]. Shiravand, H., & Hosseini, S. A. (2020). A new evaluation of the influence of climate change on Zagros oak forest dieback in Iran. Theoretical and Applied Climatology, 141, 685-697. doi: 10.1007/s00704-020-03226-z
[52]. Sire, L., Yáñez, P.S., Wang, C., Bézier, A., Courtial, B., Cours, J., Fontaneto, D., Larrieu, L., Bouget, C., Thorn, S. & Müller, J. (2021). Climate-induced forest dieback drives compositional change in insect communities that is concentrated amongst rare species, bioRxiv. doi: 10.1101/2021.04.21.440751
[53]. Spracklen, D. V., & Coelho, C. A. S. (2023). Modeling early warning signs of possible Amazon Forest dieback. Science Advances, 9(40). doi: 10.1126/sciadv.adk5670
[54]. Stephenson, N. L. (1990). Climatic control of vegetation distribution: The role of water balance. American Naturalist, 135, 649-670. doi: 10.1086/285067
[55]. Taghipour, F., Emadi, S. M., Qajar Spanalo, M., & Danesh, M. (2017, November). Investigating the effect of altitude changes on the properties of paddy soils in the east of Mazandaran province, The 18th National Rice Conference. Sari 6 p. 28 and 29, [in Farsi]
[56]. Taheri Abkenar, K., Sedighi, F., & mahmoudi, S. (2014). Study of carpinus betulus dieback distribution using topographic factors. Environmental Resources Research, 1(2), 181-189. doi: 10.22069/ijerr.2014.1693 [in Farsi]
[57]. Tiwari, O. P., Sharma, C. M., & Rana, Y. S. (2020). Influence of altitude and slope-aspect on diversity, regeneration and structure of some moist temperate forests of Garhwal Himalaya. Tropical Ecology, 61, 278-289. doi: 10.1007/s42965-020-00088-4
[58]. Touhami, I., Chirino, E., Aouinti, H., El Khorchani, A., Elaieb, M.T., Khaldi, A., & Nasr, Z. (2020). Decline and dieback of cork oak (Quercus suber L.) forests in the Mediterranean basin: A case study of Kroumirie, Northwest Tunisia. Journal of Forestry Research, 31(2), 1461-1477. doi: 10.1007/s11676-019-00974-1
[59]. Tsui, C. C., Chen, Z. S., & Hsieh, C. F. (2004). Relationships between soil properties and slope position in a lowland rain forest of southern Taiwan. Geoderma, 123(1-2), 131-142. doi: 10.1016/j.geoderma.2004.01.031
[60]. Valtera, M., Šamonil, P., Svoboda, M., & Janda, P. (2015). Effects of topography and forest stand dynamics on soil morphology in three natural Picea abies mountain forests. Plant and Soil, 392, 57-69. doi: 10.1007/s11104-015-2442-4
[61]. Walkley, A., & Black, I. A. (1934). An Examination of the Degetiareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Science, 37, 29-38. dx.doi: 10.1097/00010694-193401000-00003
[62]. Woldu, G., Solomon, N., Hishe, H., Gebrewahid H., Gebremedhin, M. A., & Birhane, E. (2020). Topographic variables to determine the diversity of woody species in the exclosure of Northern Ethiopia. Heliyon, 6(1), e03121. doi: 10.1016/j.heliyon.2019.e03121
[63]. Zand, M., Miri, M., Razie, T., & Norouzi, A. A. (2021). Investigating the effects of meteorological drought on canopy level dieback of oak forests of Lorestan Province, western Iran. Journal of Climate Research, 12(46), 1-16 [in Farsi]
[64]. Zhang, J., Fu, B., Stafford-Smith, M., Wang, S., & Zhao, W. (2021). Improve forest restoration initiatives to meet Sustainable Development Goal 15. Nature Ecology & Evolution, 5(1), 10-13. doi: 10.1038/s41559-020-01332-9