[1] Ahani, H., Jalilvand, H., Vaezi, J., & Sadati, S. E. (2018). Drought stress on Elaeagnus rhamnoides (L.) A. Nelson Seedlings Morphology. Journal of Plant Ecosystem Conservation, 5(11), 191-204. [in Farsi]
[2] Ahmadloo, F., Tabari, M., & Behtari, B. (2011). Effect of Water Stress on Some Physiological Characteristics of Pinus Brutia and P. Halepensis Seeds. Iranian Journal of Biology, 24(5), 728-736. [in Farsi]
[3] Alibrahim, M.T., Sabaghnia, N. Ebadi, A., & Mohebbodini, M. (2004). Study of drought and salinity stress on germination of common Thyme (Thymus vulgaris). Journal of Research in Agricultural Science, 1(1), 13-19 [in Farsi]
[4] Arji, I., Arzani, K., & Mirlatifi, S.M. (2002). Effect of Different Irrigation Amounts on Physiological and Anatomical Responses of Olive (Olea Europaea L. cv. Zard). Iranian Journal of Soil Research, 16(1), 1-10. [in Farsi]
[5] Asgari, M., Javanmiri pour, M., Etemad, V., & Ahmadauli, K. (2024). Effect of Drought Stress on Morphological Characteristics of Tehran Pine (Pinus eldarica Medw.) and Chinaberry (Melia azedarach L.) at Various Ages. Journal of Drought and Climate change Research, 1(4), 87-104. doi: 10.22077/JDCR.2023.6925.1047 [in Farsi]
[6] Ashkavand, P., Tabari, M., & Zarafshar, M. (2014). Assessment of drought resistance in hawthorn and mahaleb seedlings with emphasis on biochemical parameters. Journal of Forest Ecosystems Researches, 1(1), 1-18. [in Farsi]
[7] Asri, M., & Tabari, M. (2008). Early growth of direct-seeded Quercus castaneifolia (C.A. Meyer) seedlings on different soils of elm-oak stands. Journal of Biological Sciences, 8(3), 628-633. doi: 10.3923/jbs.2008.628.633.
[8] Bagheri, V., Shamshiri, M.H., Shirani, H., & Roosta, H. (2012). Nutrient Uptake and Distribution in Mycorrhizal Pistachio Seedlings under Drought Stress. Journal of Agricultural Science and Technology, 14(7), 1591-1604. doi: 20.1001.1.16807073.2012.14.7.3.5
[9] Basra, A. S., & Basra, R. K. (2000). Mechanisms of environmental stress resistance in plants (M. Kafi & A. Mahdavi Damghani, Trans.), Ferdowsi University of Mashhad press. (Original work published 1997) [in Farsi]
[10] Ciordia, M., Feito, I., Pereira-Lorenzo, S., Fernández, S., & Majada, J. (2012). Adaptive diversity in Castanea sativa Mill. half-sib progenies in response to drought stress. Environmental and Experimental Botany, 78, 56-63. doi:10.1016/j.envexpbot.2011.12.018
[11] Close, D.C., Beadle, C.L., & Brown, P. H. (2013). The physiological basis of containerised tree seedling ‘transplant shock’: a review. Australian Forestry, 68(2), 112-120. doi: 10.1080/00049158.2005.10674954
[12] Diaz-Lopez, L., Gimeno, V., Simon, I., Martinez, V., Rodriguez-Ortega, W. M., & García-Sánchez, F. (2012). Jatropha curcas seedlings show a water conservation strategy under drought conditions based on decreasing leaf growth and stomatal conductance. Agricultural Water Management, 105, 48-56. doi: 10.1016/j.agwat.2012.01.001
[13] Djumaeva, D., Lamers, J.P.A., Martius, C. et al. (2010). Quantification of symbiotic nitrogen fixation by Elaeagnus angustifolia L. on salt-affected irrigated croplands using two 15N isotopic methods. Nutrient Cycling in Agroecosystems, 88, 329-339. doi: 10.1007/s10705-010-9357-5.
[14] Garcia, A. N., Arias, S. P. B., Morte, A., & Sánchez-Blanco, M.J. (2011). Effects of nursery preconditioning through mycorrhizal inoculation and drought in Arbutus unedo L. plants. Mycorrhiza, 21(1), 53-64. doi: 10. 1007/s00572-010-0310-x
[15] Guo, X., Guo, W., Luo, Y., Tan, X., Du, N., & Wang, R. (2013). Morphological and biomass characteristic acclimation of trident maple (Acer buergerianum Miq.) in response to light and water stress. Acta Physiolgiae Plantarum. 35, 1149-1159. doi: 10.1007/s11738-012-1154-0
[16] Hedayati, M.A., Marvi Mohajer, M.R., Jazireie, M.H., & Zobeiri, M. (2003). An Investigation of Chestnut (Castanea sativa Mill.) seedling Production in Gilan Province. Iranian Journal of natural Research, 56(3), 229-244. [in Farsi]
[17] Jazirehi, M. H. (2001). Afforest in arid Environment, University of Tehran press. [in Farsi]
[18] Jinying, L., Min, L., Yongmin, M., & Lianying, S. (2007). Effects of vesicular arbuscular mycorrhizae on the drought resistance of wild jujube (Zizyphs spinosus Hu) seedlings. Frontiers of Agriculture in China, 1(4), 468-471. doi: 10.1007/s11703-007-0077-9.
[19] Kordrostami, F., Shirvany, A., Attarod, P., & Khoshnevis, M. (2017). Physiological responses of Robinia pseudoacacia seedlings to drought stress. Forest and Wood Products, 70(3), 393-400. doi: 10.22059/jfwp.2017.111443.561.
[20] Kramer, P. J., & Boyer, J. S. (1993). Water Relations of Plants and Soils, Academic Press.
Kriedemann, P. E. (1968). Photosynthesis in vine leaves as a function of light intensity, temperature, and leaf age. Vitis, 7, 213-220. doi: 10.5073/vitis.1968.7.213-220
[21]. Kriedemann, P. E. (1968). Photosynthesis in vine leaves as a function of light intensity, temperature, and leaf age. Vitis, 7, 213-220. doi: 10.5073/vitis.1968.7.213-220
[22] Levitt, J. (1980). Responses of Plant to Environmental Stress: Water, Radiation, Salt and Other Stresses, Academic Press.
[23] Mirzaei, J., & Karamshahi, A. (2015). Effects of drought stress on growth and physiological characteristics of Pistacia atlantica seedlings. Journal of Wood and Forest Science and Technology, 22(1), 31-43. [in Farsi]
[24] Mousavi Mirkala, S.R., Menbari, M., & Eshaghi rad, J. (2017). Study of ecological and growth characteristics of Elaeagnus angustifolia in West Azerbaijan province. Journal of Plant Research (Iranian Journal of Biology), 30(1), 200-213. doi: 20.1001.1.23832592.1396.30.1.17.6 [in Farsi]
[25] Norouzi Harouni, N., & Tabari koochksaraee, M. (2015). Morpho-Physiological Responses of Black Locust (Robinia pseudoacacia L.) Seedlings to Drought Stress. Forest and Wood Products, 68(3), 715-727. [in Farsi]
[26] Nourozi Haroni, N., Tabari Kouchaksaraei, M., & Sadati, E. (2017). Response of growth indices of Judas tree seedling to different irrigation periods. Iranian Journal of Forest, 8(4), 419-430. [in Farsi]
[27] Pandey, H.C., Baig, M.J., & Bhatt, R. (2012). Effect of moisture stress on chlorophyll accumulation and nitrate reductase activity at vegetative and flowering stage in Avena species. Agricultural Science Research Journal, 2(3), 111-118.
[28] Saadatmand, L., Ghorbanli, M., & Niakan, M. (2015). Study of Some Morphological Characteristics of the Medicinal Plant Elaeagnus Angustifolia L. In Four Different Habitats of Khorasan Razavi Province. Journal of Plant Environmental Physiology, 10(37), 21-30. [in Farsi]
[29] Sadrzadeh, M., & Moalemi, N. (2006). Effect of water stress and potassium on growth characteristics of young olive plants cvs. Baghmalek and Zard. Journal of Agricultural research (water, soil and plants in agriculture), 6(4), 1-9. [in Farsi]
[30] Saeidi abueshaghi, Z., Pilehvar, B., & Sayedena, S. (2021). Effect of drought stress on morphophysiological and biochemical traits of purple (Cercis siliquastrum L.) seedlings. Iranian Journal of Forest and Poplar Research, 29(1), 91-100. doi: 10. 22092/IJFPR.2021.353383.1981 [in Farsi]
[31] Sanchez, D. H., Siahpoosh, M. R., Roessner, U., Udvardi, M., & Kopka, J. (2008). Plant metabolomics reveals conserved and divergent metabolic responses to salinity. Physiologia plantarum, 132(2), 209–219. doi: 10.1111/j.1399-3054.2007. 00993.x
[32] Shirbani, S., Davari nejad, G., & Shoor, M. (2012). A Study of the Stomatal Characteristics in Fig Cultivars under Drought Stress Conditions. Iranian Journal of Horticultural Science, 43(2), 125-133. [in Farsi]
[33] Silva, M. R., Nogueira, A. C., de Carvalho, C. M., & Simões, D. (2012, July). Morphological responses of Eucalyptus grandis seedlings submitted to different water stress levels during hardening. International conference of Agricultural engineering, Valencia, Spain.
[34] Singh, J., & Patel, A. L. (1996). Water status, gaseous exchange, prolin accumulation and yield of wheat in response to water stress. Annual of Biology Ludhiana, 12(1), 77-81.
[35] Sisakhtnejad, M., Zolfaghari, R., & Fayyaz, P. (2018). Assesment of drought resistant of Quercus brantii and Q. Libani seedlings using growth, physiological and nutrient uptake. Applied Biology, 30(2), 137-157. https://doi.org/10.22051/jab.2017.3258 [in Farsi]
[36] Sternberg, P. (2011). Physiological and morphological basis for differences in growth, water use and drought resistance among Cercis L. Taxa [Doctoral dissertation, Ohio State University], library of Ohio State University. http://rave.ohiolink.edu/etdc/view?acc_num=osu1325209664
[37] Tabatabaei, S. A., Jalilvand, H., & Ahani, H. (2014). Drought stress response in Caucasian hackberry: growth and morphology. Journal of Blodlverslty and Envlronmental Sclences (Journal of Biodiversity and Environmental Sciences), 5(3), 158-169.
[38] Wu, F., Bao, W., Li, F., & Wu, N. (2008). Effects of drought stress and N supply on the growth, biomass partitioning and water-use efficiency of Sophora davidii seedlings. Environmental and Experimental Botany, 63(1-3), 248-255. doi: 10.1016/j.envexpbot.2007.11.002