تحلیل سهم گردوغبارهای داخلی و خارجی و تغییرات مکانی-زمانی آنها در استان کرمان

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استاد گروه مدیریت و کنترل بیابان، دانشکده منابع طبیعی و علوم زمین، دانشگاه کاشان، کاشان، ایران

2 دانشیار بیابان‌زدایی، گروه علوم و مهندسی محیط‌زیست، دانشکده منابع طبیعی، دانشگاه جیرفت، جیرفت، ایران

10.29252/aridbiom.2024.20961.1979

چکیده

ذرات گردوغبار برخاسته از منابع داخلی و خارجی اثرات نامطلوبی بر سلامت عموم و محیط‌زیست دارند. با توجه به نامشخص‌بودن سهم منابع ذکرشده در تولید گردوغبار، بررسی این موضوع در مناطق مختلف ایران حائز اهمیت زیادی است. علاوه بر این، تحلیل تغییرات مکانی و زمانی رویدادهای با منشأهای مختلف می‌تواند گام مؤثری در جهت شناسایی مناطق حساس‌تر به پدیده فرسایش بادی و کاهش خطرات ناشی از وقوع آن در مناطق تحت تأثیر باشد. مطالعه حاضر با درنظرگرفتن موضوعات ذکرشده به‌عنوان اهداف اصلی انجام شد. بدین منظور از آمار پدیده گردوغبار با منشأ داخلی (کدهای 7 تا 9، 98 و 30 تا 35) و خارجی (کد 06) ثبت‌شده در 11 ایستگاه همدید استان کرمان در بازه زمانی مشترک 2002-2020 استفاده شد. پس از محاسبه فراوانی رویدادها، سهم منابع داخلی و خارجی تولید گردوغبار در مناطق مختلف استان کرمان مشخص شد. با استفاده از نقشه پهنه‌بندی شده فراوانی وقوع هر رویداد و آزمون من-کندال به‌ترتیب تغییرات مکانی و زمانی آن‌ها تحلیل شد. نتایج نشان داد که در سه شهرستان جیرفت، انار و سیرجان سهم رویدادهای با منشأ خارج ایستگاهی بیشتر از سایر مناطق استان و به ترتیب حدود 80%، 8/53% و 2/53% بوده است. سهم رویدادهای با منشأ داخلی در شهربابک، رفسنجان، شهداد و بافت بیش از 73% و در زرند، کرمان، بم و کهنوج بیش از 52% بوده است. به‌طور متوسط سهم رویدادهای داخلی و خارجی در استان کرمان به ترتیب 6/60% و 4/39% برآورد گردید. الگوی پراکنش مکانی گردوغبارها نشان داد که بم و جیرفت به‌عنوان حساس‌ترین مناطق به فرسایش بادی در سال‌های گذشته بوده‌اند. در دوره زمانی موردمطالعه، روند تغییرات رویدادهای با منشأ داخل و خارج ایستگاه در شهداد و زرند، افزایشی معنی‌دار بوده است. روند افزایشی معنی‌دار رویدادهای با منشأ داخلی در کهنوج، رفسنجان و انار و روند افزایشی گردوغبارهای با منشأ خارج ایستگاه در سیرجان نیز مشاهده شد (Z>+1.96).

کلیدواژه‌ها

موضوعات


[1]. Akbari Azirani, T., Yahyavi Dizaj, A., & Keykhosravi, G. (2023). The trend analysis of dust phenomenon changes in the western region of Iran during 1979-2018. Journal of Climate Research, 53, 147-162. [in Farsi]
[2]. Asadi, M., & Karami, M. (2019). Spatial and temporal distribution of dust in Iran. Environmental Researches, 10(19), 293-300. [in Farsi]
[3]. Bao, T., Xi, G., Deng, B., Chang, I.-S., Wu, J., & Jin, E. (2023). Long-term variations in spatiotemporal clustering characteristics of dust events in potential dust sources in East Asia. Catena, 232, 107397. doi: 10.1016/j.catena.2023.107397
[4]. Chen, J., Han, C., Peng, Y., Wang, M., & Zhao, Y. (2023). Improved three‐dimensional mapping of soil chromium pollution with sparse borehole data: Incorporating multisource auxiliary data into IDW‐based interpolation. Soil Use and Management, 39(2), 933-947. doi: 10.1111/sum.12899
[5]. Dargahian, F., Lotfinasab Asl, S., Khosroshahi, M., & Gohardoust, A. (2017). Determining the share of internal and external resources of dust in Khuzestan province. Iran Nature, 2(5), 36-41. doi: 10.22092/irn.2017.113621 [in Farsi]
[6]. Ebrahimi-Khusfi, Z., Ebrahimi-Khusfi, M., Mirakbari, M., & Soleimani-Sardoo, M. (2022). Investigating the impact of drought on dust events in Kerman province using meteorological and satellite data. Journal of Arid Biome, 11(2), 133-151. doi: 10.29252/ARIDBIOM.2023.18595.1894 [in Farsi]
[7]. Ebrahimi-Khusfi, Z., Mirakbari, M., Ebrahimi-Khusfi, M., & Taghizadeh-Mehrjardi, R. (2020). Impacts of vegetation anomalies and agricultural drought on wind erosion over Iran from 2000 to 2018. Applied Geography, 125, 102330. doi: 10. 1016/j.apgeog.2020.102330
[8]. Ebrahimi Khusfi, Z., Roustaei, F., Ebrahimi Khusfi, M., & Naghavi, S. (2020). Investigation of the relationship between dust storm index, climatic parameters, and normalized difference vegetation index using the ridge regression method in arid regions of Central Iran. Arid land research and management, 34(3), 239-263. doi: 10.1080/15324982.2019.1694087
[9]. Farajzadeh, M., & Razi, M. (2011). The study of temporal and spatial distribution of storms and severe winds in Iran. Watershed Management Research (Pajouhesh & Sazandegi), 91, 32-22. [in Farsi]
[10]. Feng, I., Tong, D., Gill, T. E., Van Pelt, R. S., & Webb, N. (2022, December). The Economic Costs of Wind Erosion in the United States. In AGU Fall Meeting Abstracts (Vol. 2022, pp. NH44B-05).
[11]. Ghamkhar, M., Roustaei, F., & Ebrahimi-Khusfi, Z. (2023). Spatiotemporal variations of internal dust events in urban environments of Iran, Southwest Asia. Environmental Science and Pollution Research, 30(11), 29476-29493. doi: 10.1007/s11356-022-24091-5
[12]. Ghavidel Rahimi, Y., Farajzadeh, M., & Lashni Zand, I. (2018). Analysis of temporal changes of dust storms in Khorramabad. Applied Research in Geographical Sciences, 18(51), 87-102. doi. 10.29252/jgs.18.51.87 [in Farsi]
[13]. Hahnenberger, M., & Nicoll, K. (2012). Meteorological characteristics of dust storm events in the eastern Great Basin of Utah, USA. Atmospheric Environment, 60, 601-612.doi.org/10.1016/j.atmosenv.2012.06.029
[14]. Hamidi, M., & Roshani, A. (2023). Investigation of climate change effects on Iraq dust activity using LSTM. Atmospheric Pollution Research, 14(10), 101874. doi: 10.1016/j.apr.2023.101874.
 [15]. Helali, J., Asadi Oskouei, E., Hosseinzaheh, T., Kouhi, M., & Mohammadi, S. M. (2023). Spatio-temporal analysis of seasonal and annual trends of dust storm days in arid climates of Iran. Iranian Journal of Soil and Water Research, 54(3), 513-531.  doi: 10.22059/ijswr.2023.355469.669454 [in Farsi]
[16]. Hoseine Sadr, A., Mohammadi, G. H., & Hoseine Sadr, M. (2014). Trend analysis of dust Tabriz. Nivar, 38(85-84), 3-10. [in Farsi]
[17]. Jaafar, B. I., & Kadhum, S. A. (2023, November). Bioaccessibility and Distribution of Heavy Metals in Particles from a Dust Storm in Iraq. In IOP Conference Series: Earth and Environmental Science (Vol. 1259, No. 1, p. 012040). IOP Publishing.
[18]. Jafari, R., & Sanati, H. (2021). Identification of Dust Sources and Storms in the South of Kerman Province Using Remote Sensing Data. Journal of Water and Soil Science, 25(3), 145-158. doi. 10.47176/jwss.25.3.13894 [in Farsi]
[19]. Joshi, J. R. (2021). Quantifying the impact of cropland wind erosion on air quality: A high-resolution modeling case study of an Arizona dust storm. Atmospheric Environment, 263, 118658. doi: 10.1016/j.atmosenv.2021.118658
[20]. Kang, L., Huang, J., Chen, S., & Wang, X. (2016). Long-term trends of dust events over Tibetan Plateau during 1961–2010. Atmospheric Environment, 125, 188-198. doi. 10.1016/j.atmosenv.2015.10.085
[21]. Khusfi, Z. E., Khosroshahi, M., Roustaei, F., & Mirakbari, M. (2020). Spatial and seasonal variations of sand-dust events and their relation to atmospheric conditions and vegetation cover in semi-arid regions of central Iran. Geoderma, 365, 114225. doi: 10.1016/j.geoderma.2020.114225
[22]. Kim, J., Dorjsuren, M., Zucca, C., & Purevjav, G. (2023). Mapping land degradation and sand and dust generation hotspots by spatiotemporal data fusion analysis: A case‐study in the southern Gobi (Mongolia). Land Degradation & Development, 34(6), 1629-1647. doi: 10.1002/ldr.4558
[23]. Lackoóvá, L., Lieskovský, J., Nikseresht, F., Halabuk, A., Hilbert, H., Halászová, K., & Bahreini, F. (2023). Unlocking the Potential of Remote Sensing in Wind Erosion Studies: A Review and Outlook for Future Directions. Remote Sensing, 15(13), 3316.
[24]. Leys, J., Heidenreich, S., White, S., Guerschman, J., & Strong, C. (2023). Dust-storm frequencies, community attitudes, government policy and land management practices during three major droughts in New South Wales, Australia. The Rangeland Journal, 44(5-6), 343-355. doi: 10. 1071/RJ22059.
[25]. Liu, J., Ding, J., Li, X., Zhang, J., & Liu, B. (2023). Identification of dust aerosols, their sources, and the effect of soil moisture in Central Asia. Science of the total environment, 868, 161575. doi: 10.1016/j.scitotenv.2023.161575.
[26]. Mann, H. (1945). Non-parametric tests against trend. Econometria. MathSci Net, 13, 245-259. doi: 10.2307/1907187
[27]. Middleton, N., & Goudie, A. (2006). Desert dust in the global system. Springer. Middleton, NJ (1986). A geography of dust storms in South-west Asia. Journal of Climatology, 6(2), 183-196.
[28]. Mijani, S., Parsa Motlagh, B., & Ebrahimi Khusfi, Z. (2023). Evaluation of the effect of climatic factors and meteorological drought on the production of some crops in Kerman province. Journal of Agricultural Meteorology, Available Online from 02 September2023.doi:10.22125/agmj.2023.391272.1147 [in Farsi]
[29]. Mohammad, L., Mondal, I., Bandyopadhyay, J., Pham, Q. B., Nguyen, X. C., Dinh, C. D., & Al-Quraishi, A. M. F. (2022). Assessment of spatio-temporal trends of satellite-based aerosol optical depth using Mann–Kendall test and Sen’s slope estimator model. Geomatics, Natural Hazards and Risk, 13(1), 1270-1298. doi: 10. 1080/19475705.2022.2070552.
[30]. Morales-Acuña, E. D. J., Aguíñiga-García, S., Cervantes-Duarte, R., & Linero-Cueto, J. (2023). Estimation of the desert dust balance and its relationship with environmental factors in the southern Baja California Peninsula. Earth Science Informatics, 16(3), 2595-2613. doi:1007/s12145-023-01047-y.
[31]. Naeimi, M., Mirakbari, M., Khosroshahi, M., Zandifar, S., & Ghasemi Aryan, Y. (2022). Analyzing the effects of climate change on dust events, a case study: Khorasan Razavi province. Desert Ecosystem Engineering, 10(33), 65-78. doi: 10. 22052/DEEJ.2021.10.33.41 [in Farsi]
[32]. Namdari, S., Valizade, K., Rasuly, A., & Sari Sarraf, B. (2016). Spatio-temporal analysis of MODIS AOD over western part of Iran. Arabian Journal of Geosciences, 9, 1-11. doi: 10.1007/s12517-015-2029-7.
[33]. O’Loingsigh, T., McTainsh, G., Tews, E., Strong, C., Leys, J., Shinkfield, P., & Tapper, N. (2014). The Dust Storm Index (DSI): a method for monitoring broadscale wind erosion using meteorological records. Aeolian Research, 12, 29-40. doi: 10.1016/j.aeolia.2013.10.004.
[34]. Pierre, C., Rajot, J., Faye, I., Dorego, G., Bouet, C., Marticorena, B., . . . Tall, A. (2023). A contrasting seasonality of wind erosivity and wind erosion between Central and Western Sahel. Aeolian Research, 62, 100879. doi: 10.1016/j.aeolia.2023.100879
[35]. Pourghasemi, H. R. (2022). GIS, Remote Sensing, and Spatial Modeling in R (Vol. 1), Shiraz University press. [in Farsi]
[36]. Program and Budget Organization of Iran (2020), National spatial planning Document, Atlas of Geological Hazards Maps, 1-62. [in Farsi]
[37]. Rahi Zehi, H., Khosravi, M., & Hamidian Pour, M. (2021). The Spatio-Temporal Variations of Aerosol Concentration Using Remote Sensing in Sistan and Baluchestan Province (2018 - 2000). Journal of Spatial Analysis Environmental Hazards, 8(1), 79-92. doi: 10.52547/jsaeh.8.1.79 [in Farsi]
[38]. Rashki, A., Arjmand, M., & Kaskaoutis, D. (2017). Assessment of dust activity and dust-plume pathways over Jazmurian Basin, southeast Iran. Aeolian Research, 24, 145-160. doi:10.1016/j.aeolia.2017.01.002
 [39]. Rashki, A., Kaskaoutis, D., Goudie, A. S., & Kahn, R. (2013). Dryness of ephemeral lakes and consequences for dust activity: the case of the Hamoun drainage basin, southeastern Iran. Science of the total environment, 463, 552-564. doi: 10. 1016/j.scitotenv.2013.06.045
[40]. Rostami, D., & Hosseini, S. A. (2018). Analysis and tracking dust phenomenon in south and southeast of Iran by using HYSPLIT model and the principles of remote sensing. Journal of Spatial Analysis Environmental hazarts, 5(3), 103-119. doi: 10.29252/jsaeh.5.3.103 [in Farsi]
[41]. Shoaei, Z. (January, 2016). The intensification of dust storms as an important environmental challenge of the last decade in West Asia and Iran. The first international conference of Iran's natural hazards and environmental crises, solutions and challenges, Ardabil. https://civilica.com/doc/549209 [in Farsi]
[42]. Singh, R. (2023). Wind erosion. In Soil and water conservation structures design (pp. 297-322). Singapore: Springer Nature Singapore. doi: 10.1007/978-981-19-8665-9_11.
[43]. Sobhani, B., Jafarzadeh Aliabad, L., & Mohamadi, G. H. (2024). Investigating the horizontal visibility characteristics in the southern coasts of the Caspian Sea using the extinction coefficient. Journal of Environmental Science Studies, 9(2), 8466-8451. doi: 10.22034/jess.2023.405245.2073 [in Farsi]
[44]. Vali, A., & Roustaei, F. (2018). Investigation of the Wind Erosion Trend in Central Iran using Dust Storm Index in the Last Fifty Years. Journal of Water and Soil Science, 21(4), 189-200. doi: 10.29252/jstnar.21.4.189 [in Farsi]
[45]. Velayatzadeh, M. (2020). Introducing the causes, origins and effects of dust in Iran. Journal of Air Pollution and Health, 5(1), 63-70. doi: 10.18502/japh.v5i1.2860
[46]. Zhao, H., Zhang, F., Yu, Z., & Li, J. (2022). Spatiotemporal variation in soil degradation and economic damage caused by wind erosion in Northwest China. Journal of Environmental Management, 314, 115121. doi: 10.1016/j.jenvman.2022.115121
[47]. Zucca, C., Fleiner, R., Bonaiuti, E., & Kang, U. (2022). Land degradation drivers of anthropogenic sand and dust storms. Catena, 219, 106575. doi: 10. 1016/j.catena.2022.106575