بررسی تاثیر تغییر اقلیم بر دامنه پراکنش گونه . Prunus eburnea (Spach) Aitch. & Hemsl با استفاده از مدل مکسنت

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه علوم گیاهی، دانشکده علوم زیستی، دانشگاه تربیت مدرس، تهران، ایران

2 گروه تنوع زیستی و مدیریت اکوسیستم ها، پژوهشکده علوم محیطی، دانشگاه شهید بهشتی، تهران، ایران

3 گروه مهندسی معدن، دانشکده فنی و مهندسی، دانشگاه شهید باهنر کرمان، ایران

10.29252/aridbiom.2021.16797.1861

چکیده

تغییراقلیم تأثیر قابل توجهی بر پراکنش گیاهان در اکوسیستم­ های آسیب ­پذیر نظیر رویشگاه ­های بادام خاکستری Prunus eburnea (Spach) Aitch. & Hemsl. دارد.  بادام خاکستری از خانواده Rosaceae دارای اهمّیّت حفاظتی، غذایی بوده و گونه ­ای بومی است که در مناطق خشک و نیمه ­خشک ایران بطور گسترده می ­روید. اهداف اصلی این مطالعه شامل مدل­سازی مطلوبیت رویشگاهی گونه بادام خاکستری با استفاده از مدل مکسنت و پیش ­بینی تاثیر تغییرات عوامل اقلیمی و نیز تعیین سهم هر عامل بر پراکنش آن در مدل­سازی مطلوبیت رویشگاهی می­باشد. ارزیابی صحت مدل مکسنت با استفاده از شاخص سطح زیر منحنی (94/0) بیانگر عملکرد عالی این مدل پیش ­بینی است. نتایج نشان داد که به ترتیب لایه ­های عمق خاک و میزان تابش نورخورشید با مقدار 4/35% و 3/27% بیشترین سهم را در مدل­سازی مطلوبیت رویشگاهی گونه بادام خاکستری دارند. بر اساس نقشه مطلوبیت رویشگاهی در شرایط کنونی اقلیمی پیش­ بینی می ­شود که مناطق جنوبی (استان­ های هرمزگان، بوشهر و فارس)، جنوب­ غربی (استان­ های کهگیلویه و بویراحمد و چهارمحال بختیاری) و جنوب­ شرقی (استان­ های سیستان و بلوچستان، کرمان و خراسان جنوبی) کشور شرایط محیطی مناسب در گسترش رویشگاه ­های این گونه داشته باشند. به منظور ارزیابی اثر تغییر اقلیم بر مطلوبیت رویشگاهی این گونه از سناریوی انتشار گاز­های گلخانه­ای RCP 8.5 مربوط به مدل انتشار گاز­های گلخانه ­ای CCSM4 در سال 2080 استفاده گردید. براساس مدل مکسنت وسعت مناطق مطلوب رویشگاهی این گونه در شرایط اقلیمی کنونی 862113 کیلومتر مربع می­ باشد که پیش­ بینی می­ گردد در سال 2080 مناطق مطلوبی که این گونه از دست خواهد داد 14/36 درصد و مناطق مطلوب جدیدی که این گونه بدست خواهد آورد 9/8 درصد باشد. پیش ­بینی می­گردد وسعت مناطق مطلوب رویشگاهی این گونه در آینده به 627273 کیلومتر مربع کاهش یابد. نتایج مدل­سازی، ضرورت برنامه ریزی برای بهره ­برداری و حفاظت از رویشگاه ­های بادام خاکستری را نشان می­ دهد.

کلیدواژه‌ها


[1]. Anderson, R., Dudík, M., Ferrier, S., Guisan, A., J Hijmans, R., Huettmann, F., R Leathwick, J., Lehmann, A., Li, J. and G Lohmann, L. (2006). Novel methods improve prediction of species’ distributions from occurrence data. Ecography. 29(2), 129-151.
[2] Assadi, M. (ed.), 1989-2016: Flora of Iran 1-85. – RIFR, Tehran. (In Farsi).
[3]. Azevedo, M. C. C., Arau´jo, F. G., Cruz-Filho, A. G., Pessanha, A. L. M., Arau´jo Silva M., and Guedes, A. P. P. (2007). Demersal fishes in a tropical bay in southeastern Brazil: Partitioning the spatial, temporal and environmental components of ecological variation. Estuarine, Coastal and Shelf Science. 75, 468–480.
[4]. Buehler, E. C. and Ungar, L. H. (2001). Maximum entropy methods for biological sequence modeling. Workshop on Data Mining in Bioinformatics (BIOKDD). University of Pennsylvania. Philadelphia, 345 p.
[5]. Bugmann, H. K. M. and Solomon, A. M. (2000). Explaining forest composition and biomass across multiple biogeographical regions. Ecological Applications. 10, 95–114.
[6]. Chapman, D. S., and Purse, B. V. (2011). Community versus single-species distribution models for British plants. Journal of Biogeography. 38, 1524–1535.
[7]. Davis, M. B. and Shaw, R. G. (2001). Range shifts and adaptive responses to quaternary climate change. Science. 292, 673–679.
[8]. Dormann, C.F., Schymanski, S.J., Cabral, J., Chuine, I., Graham, C., Hartig, F., Kearney, M., Morin, X., Römermann, C., Schröder, B. and Singer, A. (2012). Correlation and process in species distribution models: bridging a dichotomy. Journal of Biogeography, 39, 2119-2131.
[9]. Elith, J., Graham, H. C., Anderson, P. R., Dudik, M., Ferrier, S., Guisan, A., Hijmans, J. R., Huettmann, F., Leathwick, R. and Lehmann, A. (2006). Novel methods improve prediction of species’ distributions from occurrence data. Ecography, 29, 129-151.
[10]. Elith, J., Kearney, M., and Phillips, S. (2010). The art of modelling range-shifting species. Methods in Ecology and Evolution, 1, 330–342.
[11]. ESRI. 2011. ArcGIS desktop: release 10. Environmental Systems Research Institute, Redlands, CA.
[12]. Evans, M., Merow, C., Record, S., McMahon, S. M. and Enquist. B. J. (2016). Towards process-based range modeling of many species. Trends in Ecology and Evolution, 31, 860–871.
[13]. Fick, S. E, and Hijmans, R. J. (2017) Worldclim 2: New 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37(12), 4302-4315.
[14]. Flory, A. R., Kumar, S., Stohlgren, T. J. and Cryan, P. M. (2012). Environmental conditions associated with bat white‐nose syndrome mortality in the north‐eastern United States. Journal of Applied Ecology. 49(3), 680-689.
[15]. Ghahreman, N., Tabatabaei, M., and Babaeian, I. (2015). Investigation of uncertainty in the IPCC AR5 precipitation and temperature projections over Iran under RCP scenarios. Un climate change conference. Paris.
[16]. Glenn, M., Robert, E., Brian, H., David, R. F., Jonathan, H., and Dana, M. (2002). Vegetation variation across Cape Cod, Massachusetts: environmental and historical determinants. Journal of Biogeography, 29, 1439–1454.
[17]. Gogtay, N. J., and Thatte, U. M. (2017). Principles of correlation Analysis. Journal of the Association of Physicians of India. 65, 78-81.
[18]. Gomes, V., IJff, S., Raes, N., Amaral, I. (2017). Species Distribution Modelling: Contrasting presence-only models with plot abundance data. SCIENtIfIC Reports.  8, 1003.
[19]. Hengl, T., De Jesus, J. M., MacMillan, R. A., Batjes, N. H., and Heuvelink, G. B. M. (2014). SoilGrids1km — Global Soil Information Based on Automated Mapping. PLoS ONE. 9(8), e105992.
[20]. Hernandez, P. A., Graham, C. H., Master, L. L. and Albert, D. L. (2006). The effect of sample size and species characteristics on performance of different species. Ecography. 29: 773-785.
[21]. Hijmans, R. J. (2017). Raster. Introduction to the 'raster' package. Version 2.6-7 R package. Available: http://CRAN.R-project.org/package = Raster.
[22]. Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. and Jarvis, A. (2005). Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology. 25(15), 1965-1978.
[23]. Hirzel, A. H., J. Hausser, D., Chessel, P. and Perrin, N. (2002). Ecological niche factor analysis: how to compute habitat-suitability maps without absence data. Ecology, 73(22): 2027-2036.
[24]. Jump, A. and Penuelas, J. (2005). Running to stand still: adaptation and the response of plants to rapid climate change. Ecology Letters, 8, 1010-1020.
[25]. Kantar, M. B., Sosa, C. C., Khoury, C. K., Castañeda-Álvarez, N. P., Achicanoy, H. A., Bernau, V., Kane, N. C., Marek, L., Seiler, G and Rieseberg, L. H. (2015). Ecogeography and utility to plant breeding of the crop wild relatives of sunflower (Helianthus annuus L.). Frontal Plant Science. 6, 841.
[26]. Khalasi Ahwazi, L., Zare Chahouki, M. A. and Hosseini, S. Z. (2015). Modeling geographic distribution of Artemisia sieberi and Artemisia aucheri using presence-only modelling methods (MAXENT and ENFA). Journal of Renewable Natural Resources Research. 6(1), 57-73. (In Farsi)
[27]. Khatamsaz, M. 1993. Flora of Iran (Family Rosaceae). Vol. 6. Research Institute of Forest and Rangelands press, Tehran, 274315. (In Farsi).
[28]. Kramer, K., Degen, B., Buschbom, J., Hickler, T., Thuiller, W., Sykes, M. T. and Winter, W. (2010). Modelling exploration of the future of European beech (Fagus sylvatica L.) under climate change—Range, abundance, genetic diversity and adaptive response. Forest Ecology and Management. 259, 2213–2222.
[29]. Liu, C., White, M. and Newell, G. (2011). Measuring and comparing the accuracy of species distribution models with presence–absence data. Ecography, 34, 232–243.
[30]. Mazangi, A., Ejtehadi, H., Mirshamsi, O., Ghasemzade, F. and Hosseiynian, S.S. (2016). Effects of climate change on the distribution of endemic Ferula xylorhachis Rech.f. (Apiaceae: Scandiceae) in Iran: Predictions from ecological niche models. Russian Journal of Ecology. 47, 349–354.
[31]. Nussey, D. H., Postma, E., Gienapp, P. and Visser, M.E. (2005). Selection on heritable phenotypic plasticity in a wild bird population. Science. 310, 304–306.
[32]. Parmesan, C. (2006). Ecological and evolutionairy responses to recent climate change. Annual Review of Ecology and Systematics. 37, 912–929.
[33]. Phillips, S. J., Anderson, R. P. and Schapired, R. E. (2006). Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190, 231–259.
[34]. Rahmani, R., Neji, M., Belgacem, M., and Debuba, M. (2020). Potential distribution and the habitat suitability of the African mustard (Brassica tournefortii) in Tunisia in the context of climate change. Arabian journal of geoscience. https://dx.doi.org/10.1007/s12517-020-05467-8
[35]. Rechinger, K. H. (1963-1992). Flora Iranica Graz. pp: 1-171.
[36]. Rehfeldt, G. E., Tchebakova, N. M., Parfenova, Y. I., Wykoff, W. R., Kuzmina, N. A. and Milyutin, L. I. (2002). Intraspecific responses to climate in Pinus sylvestris. Global Change Biology. 8, 912–929.
[37]. Rezaei, S. A., and Arzani, H. (2007). The use of soil surface attributes in rangelands capability assessment. Iranian journal of Range and Desert Research. 14(2), 232-248.
[38]. Sexton, J. P., Hangartner, S. B. and Hoffmann, A. A. (2014). Genetic isolation by environment or distance: which pattern of gene flow is most common? Evolution. 68, 1–15.
[39]. Sheth, S. N. and Angert, A. L. (2014). The evolution of environmental tolerance and range size: a comparison of geographically restricted and widespread Mimulus. Evolution, 68, 2917–2931.
[40]. Skelly, D. K., Joseph, L. N., Possingham, H. P., Freidenburg, L. K., Farrugia, T. J., Kinnison, M. T. and Hendry, A. P. (2007). Evolutionary responses to climate change. Conservation Biology. 21, 1353–1355.
[41]. Stuart, N. (2015). ArcGeomorphometry: A toolbox for geomorphometric characterization of DEMs in the ArcGIS environment. Computers and Geosciences. https://doi.org/10.1016/j.cageo.2015.09.020.
[42]. Swets, J. A. (1988). Measuring the accuracy of diagnostic systems. Science, 240, 1285–1293.
[43]. Titeux, N., Henle, K., Mihoub, J. B., Regos, A., Geijzendorffer, I. R., Cramer, W., Verburg, P.H. and Brotons, L. (2017). Global scenarios for biodiversity need to better integrate climate and land use change. Diversity and distributions, 23(11):1231–1234.
[44]. Wang, C., Liu, C., Wan, J. and Zhang, Z. (2016). Climate change may threaten habitat suitability of threatened plant species within Chinese nature reserves. PeerJ. 14;4:e2091. doi: 10.7717/peerj.2091. PMID: 27326373; PMCID: PMC4911960.
[45]. Wiens, J.A., Stralberg, D., Jongsomjit, D., Howell, C.A., and Howell, M.A. (2009). Niches, models, and climate change: Assessing the assumptions and uncertainties. PNAS. 106-suppl. 2-19729–19736.
[46]. Willi, Y., Van Busrirk, J. and Hoffmann, A. A. (2006). Limits to the adaptive potential of small populations. Annual Review of Ecology, Evolution, and Systematics. 37, 433–458.