تأثیر لیگاندهای کلات ساز بر سینتیک آزادسازی سرب از کانی مونت موریلونیت به عنوان یک کانی رایج مناطق مناطق خشک و نیمه خشک

نوع مقاله : مقاله پژوهشی

نویسندگان

1 مربی پژوهشی بخش تحقیقات حفاظت خاک و آبخیزداری، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان اصفهان، سازمان تحقیقات، آموزش و ترویج کشاورزی، اصفهان، ایران

2 دانشیار گروه علوم خاک، دانشکده کشاورزی، دانشگاه صنعتی اصفهان، ایران

3 استاد گروه علوم خاک، دانشکده کشاورزی، دانشگاه صنعتی اصفهان، ایران

10.29252/aridbiom.2021.17112.1869

چکیده

آلودگی به فلزات سنگین مانند سرب در اثر فعالیت‌های مخرب ناشی از معدن‌کاوی یکی از مشکلات جدی خاک‌های مناطق خشک و نیمه‌خشک کشور است. راهکارهای رفع و مقابله با این آلودگی‌ها یکی از ضروریات حفاظت از این عرصه‌ها می‌باشد. در سیستم‌های خاک و رسوب زیست‌فراهمی و تحرّک فلزات غالباً توسط واکنش‌های جذب-واجذب کنترل می‌شود. اگرچه مطالعات زیادی در خصوص فهم جذب فلزات توسط کانی‌ها صورت گرفته ولی اطلاعات کمی دربارة واجذب و بخصوص سینتیک واجذب فلزات تحت تأثیر لیگاندهای آلی وجود دارد. در این پژوهش واجذب سرب از کانی مونت‌موریلونیت در حضور لیگاندهای زیست‌تخریب‌پذیر MGDA و GLDA در دو غلظت 25/0 و 0/1 میلی‌مولار در مقایسه با لیگاند اتیلن دی­آمین­تترا­استیک اسید (EDTA) بررسی شد. نتایج نشان داد مقدار واجذب بستگی به میزان غلظت لیگاند مورد بررسی دارد. توانایی لیگاندها در واجذب سرب از مونت‌موریلونیت به ترتیب EDTA>MGDA>GLDAبود. تقریباً 12%، 19% و 23% از Pb واجذب شده در غلظت 25/0 میلی‌مولار به ترتیب از لیگاندهای GLDA،  MGDA و EDTA به دست آمد. مقادیر متناظر در غلظت 0/1 میلی‌مولار نیز 47%، 59% و 93% بود؛ بنابراین می‌توان پیش‌بینی کرد که واجذب Pb از کانی­های خاک و رسوبات در حضور لیگاندهای زیست‌تخریب‌پذیر GLDA و MGDA در مقایسه با EDTA کمتر بوده و به‌تبع آن سرب تحرّک کمتری در محیط‌های آب ‌و خاک خواهد داشت. بنابراین به نظر می‌رسد با توجه به قلیایی بودن خاک‌های مناطق خشک و نیمه‌خشک کشور استفاده از لیگاندهای زیست‌تخریب‌پذیر می‌توانند منجر به آزادسازی رسوب در خاک شوند که این موضوع اثر قابل‌توجّهی در کاهش خطر آلودگی زیست‌محیطی آب‌های زیرزمینی خواهد داشت.

کلیدواژه‌ها


 [1]. Adrees, M., Ali, S., Rizwan, M., Zia-ur-Rehman, M., Ibrahim, M., Abbas, F., Irshad, M. K. (2015). Mechanisms of silicon-mediated alleviation of heavy metal toxicity in plants: a review. Ecotoxicology and Environmental Safety, 119, 186-197.
]2]. Ahmed, M. J. K., Ahmaruzzaman, M. (2016). A review on potential usage of industrial waste materials for binding heavy metal ions from aqueous solutions. Journal of Water Process Engineering, 10, 39-47.
]3]. Akcil, A., Erust, C., Ozdemiroglu, S., Fonti, V., Beolchini, F. (2015). A review of approaches and techniques used in aquatic contaminated sediments: metal removal and stabilization by chemical and biotechnological processes. Journal of Cleaner Production, 86, 24-36.
]4]. Akpomie, K. G., Dawodu, F. A., Adebowale, K. O. (2015). Mechanism on the sorption of heavy metals from binary-solution by a low cost montmorillonite and it does desorption potential. Alexandria Engineering Journal, 54(3), 757-767.
]5]. BASF. 2007. Technical Information (Ti/EVD 1418 e), Trilon® M types, BASF.
]6]. Begum, Z. A., Rahman, I. M., Tate, Y., Egawa, Y., Maki, T., Hasegawa, H. (2012). Formation and stability of binary complexes of divalent ecotoxic ions (Ni, Cu, Zn, Cd, Pb) with biodegradable aminopolycarboxylate chelants (dl-2-(2-carboxymethyl) nitrilotriacetic acid, GLDA, and 3-hydroxy-2, 2′-iminodisuccinic acid, HIDS) in aqueous solutions. Journal of Solution Chemistry, 41(10), 1713-1728.
]7]. Bilgin, M., Tulun, S. (2016). Removal of heavy metals (Cu, Cd and Zn) from contaminated soils using EDTA and FeCl3. Global Nest Journal, 18, 98-107.
]8]. Bisinger Jr, E. (2009, June). Dissolvine GL: A new, biodegradable chelating agent with an excellent safety profile. In 13th Annual Green Chemistry & Engineering Conference (pp. 23-25). MD, USA: College Park.
]9]. Cao, A., Carucci, A., Lai, T., La Colla, P., Tamburini, E. (2007). Effect of biodegradable chelating agents on heavy metals phytoextraction with Mirabilis Jalapa and on its associated bacteria. European Journal of Soil Biology, 43(4), 200-206.
]10]. Carocci, A., Catalano, A., Lauria, G., Sinicropi, M. S., & Genchi, G. (2016). Lead toxicity, antioxidant defense and environment. Reviews of environmental contamination and toxicology, 45-67.
]11]. Dissolvine, G. L. (2011). Technical Brochure. AkzoNobel Functional Chemicals BV. Amsterdam. Netherlands.
]12]. Dumat, C., Shahid, M., Khalid, S., Murtaza, B. (2020). Lead pollution and human exposure: forewarned is forearmed, and the question now becomes how to respond to the threat! In Lead in Plants and the Environment (pp. 33-65). Springer, Cham.
]13]. Eick, M. J., Peak, J. D., Brady, P. V., Pesek, J. D. (1999). Kinetics of lead adsorption/desorption on goethite: Residence time effect. Soil Science, 164(1), 28-39.
]14]. Garman, S. M., Eick, M. J., Beck, M. (2007). Desorption kinetics of lead from goethite: Effect of residence time and mixing. Soil science, 172(3), 177-188.
]15]. Guo, X., Zhang, G., Wei, Z., Zhang, L., He, Q., Wu, Q., Qian, T. (2018). Mixed chelators of EDTA, GLDA, and citric acid as washing agent effectively remove Cd, Zn, Pb, and Cu from soils. Journal of soils and sediments, 18(3), 835-844.
]16]. Hamidpoor, M. (2009). Sorption and Desorption of Cadmium and Lead on Zeolite and Bentonite. Phd. thesis. Isfahan University of Technology, Isfahan, Iran.150 pp. (in Farsi)    
]17]. Igberase, E., Osifo, P. (2015). Equilibrium, kinetic, thermodynamic and desorption studies of cadmium and lead by polyaniline grafted cross-linked chitosan beads from aqueous solution. Journal of Industrial and Engineering Chemistry, 26, 340-347.
]18]. Inyang, H. I., Onwawoma, A., Bae, S. (2016). The Elovich equation as a predictor of lead and cadmium sorption rates on contaminant barrier minerals. Soil and Tillage Research, 155, 124-132.
]19]. Kolodyńska, D. (2010). The biodegradable complexing agents as an alternative to chelators in sorption of heavy metal ions. Desalination and Water Treatment, 16(1-3), 146-155.
]20]. Li, Y., Wang, J. D., Wang, X. J., Wang, J. F. (2012). Adsorption–desorption of Cd (II) and Pb (II) on Ca-montmorillonite. Industrial & engineering chemistry research, 51(18), 6520-6528.
]21]. Mahar, A., Wang, P., Ali, A., Awasthi, M. K., Lahori, A. H., Wang, Q., Zhang, Z. (2016). Challenges and opportunities in the phytoremediation of heavy metals contaminated soils: a review. Ecotoxicology and environmental safety, 126, 111-121.
]22]. Mermut, A. R., Cano, A. F. (2001). Baseline studies of the clay minerals society source clays: chemical analyses of major elements. Clays and Clay Minerals, 49(5), 381-386.
]23]. Moghal, A. A. B., Mohammed, S. A. S., Almajed, A., Al-Shamrani, M. A. (2020). Desorption of heavy metals from lime-stabilized arid-soils using different extractants. International Journal of Civil Engineering, 18(4), 449-461.
]24]. Nörtemann, B. (2005). Biodegradation of Chelating Agents: EDTA, Dtpa, Pdta, Nta, and Edds.
]25]. Pinto, I. S., Neto, I. F., Soares, H. M. (2014). Biodegradable chelating agents for industrial, domestic, and agricultural applications a review. Environmental Science and Pollution Research, 21(20), 11893-11906.
]26]. Rahman, I. M. M., Hossain, M. M., Begum, Z. A., Rahman, M. A., Hasegawa, H. (2011). Eco-environmental consequences associated with chelant-assisted phytoremediation of metal-contaminated soil. Handbook of phytoremediation, 709-722.
]27]. Saifullah, Ghafoor, A., Zia, M. H., Murtaza, G., Waraich, E. A., Bibi, S., Srivastava, P. (2010). Comparison of organic and inorganic amendments for enhancing soil lead phytoextraction by wheat (Triticum aestivum L.). International journal of phytoremediation, 12(7), 633-649.
]28]. Shahid, M., Austruy, A., Echevarria, G., Arshad, M., Sanaullah, M., Aslam, M., Dumat, C. (2014). EDTA-enhanced phytoremediation of heavy metals: a review. Soil and Sediment Contamination: An International Journal, 23(4), 389-416.
]29]. Shirvani, M., Shariatmadari, H., Kalbasi, M. (2007). Kinetics of cadmium desorption from fibrous silicate clay minerals: Influence of organic ligands and aging. Applied Clay Science, 37(1-2), 175-184.
]30]. Srivastava, P., Gräfe, M., Singh, B., Balasubramanian, M. (2007). Cadmium and lead desorption from kaolinite. Developments in Earth and Environmental Sciences, 7, 205-233.
]31]. Uddin, M. K. (2017). A review on the adsorption of heavy metals by clay minerals, with special focus on the past decade. Chemical Engineering Journal, 308, 438-462.
]32]. Wang, G., Zhang, S., Xu, X., Zhong, Q., Zhang, C., Jia, Y., Li, Y. (2016). Heavy metal removal by GLDA washing: optimization, redistribution, recycling, and changes in soil fertility. Science of the Total Environment, 569, 557-568.
]33]. Wang, X. S., Liu, F., Lu, H. J., Zhang, P., & Zhou, H. Y. (2011). Adsorption kinetics of Cd (II) from aqueous solution by magnetite. Desalination and Water Treatment, 36(1-3), 203-209.
]34]. Yu, M. H., Tsunoda, H. (2004). Environmental toxicology: biological and health effects of pollutants.  CRC press.