پیش بینی اثر تغییر اقلیم بر مطلوبیت زیستگاه گونه گوسفند وحشی (Ovis orientalis) در استان مرکزی با استفاده از مدل سازی اجماعی

نوع مقاله : مقاله پژوهشی

نویسنده

استادیار، گروه علوم و مهندسی محیط زیست، دانشکده کشاورزی و محیط زیست، دانشگاه اراک، اراک، ایران

10.29252/aridbiom.2021.2005

چکیده

پیش­ بینی اثر تغییر اقلیم بر مطلوبیت زیستگاه حیات وحش برای حفاظت و مدیریت آنها ضروری است. این مطالعه با هدف پیش ­بینی اثر تغییر اقلیم بر مطلوبیت زیستگاه گونه گوسفند وحشی، به عنوان یکی از گونه های بومی ایران، با استفاده از مدل­سازی اجماعی در استان مرکزی انجام شد. پنج روش مدل­سازی مطلوبیت زیستگاه در چارچوب روش اجماعی و با استفاده از بسته biomod2 در نرم افزار R انجام شد. نتایج مطالعه نشان داد که همه مدل­های مورد استفاده در این مطالعه مقادیر AUC بالاتر از ۹/۰ و عملکرد عالی دارا بودند. میانگین دمای سالانه و میانگین مجموع بارندگی سالانه در حدود ۱۴/۱۱۳ تغییرات مطلوبیت زیستگاه گوسفند وحشی را توجیه نمودند، و بیشترین سهم را در تعیین مطلوبیت زیستگاه گونه داشتند. بر اساس نتایح حاصل از اجماع مدل­ها، ۵۵/۴۱ درصد معادل ۲/۱۲۱۱۳۱۶ هکتار از مساحت استان مرکزی برای گونه گوسفند وحشی مطلوبیت زیستگاهی دارد. تغییرات مطلوبیت زیستگاه گونه در سال 2050 تحت سناریو­های اقلیمی RCP2.6 و RCP8.5  نشان داد که وسعت زیستگاه مطلوب گونه به ترتیب ۳/۵۰ و ۴/۷۳ درصد کاهش می­یابد. بیش­تر کاهش زیستگاه در مناطق حفاظت شده مربوط به مناطق ورسان، بازرجان، موته، جاسب و هفتادقله و کم­ترین کاهش زیستگاه مربوط به مناطق رازقان و چال خاتون است. همچنین در برخی قسمت­ها شاهد بروز زیستگاه مطلوب و حضور گونه به ترتیب 1/۴ و 1/۱۲ درصد خواهیم بود. از نتایج این مطالعه می­توان در برنامه­ریزی­های حفاظتی گوسفند وحشی و مدیریت مناطق حفاظت شده استفاده نمود.

کلیدواژه‌ها


[1]. Allouche, O., Tsoar A., Kadmon, R. (2006). Assessing the accuracy of species distributionmodels: prevalence, kappa and the true skill statistic (TSS), Journal of Applied Ecology, (43), 1223–1232.
[2]. Anderson, R.P., Lew, D., Townsend Peterson, A., (2003). Evaluating predictive models of species distributions: criteria for selecting optimal models. Ecological Modelling, 244-292.
[3]. Araújo, M.B., Alagador, D., Cabeza, M., Nogués-Bravo, D., Thuiller, W. (2011). Climate change threatens European conservation areas. Ecology letters, 14: 484–492.
[4]. Ashrafzadeh, M.R., Naghipour, A.A., Haidarian, M., Khorozyan, I. (2019a). Modeling the response of an endangered flagship predator to climate change in Iran. Mammal Research, (64): 1-13.
[5]. Bellard, C., Bertelsmeier, C., Leadley, P., Thuiller, W., Courchamp, F. (2012). Impacts of climate change on the future of biodiversity. Ecology Letters, 15(4): 365-377.
[6]. Chen, I.C., Hill, J.K., Ohlemüller, R., Roy, D.B., Thomas, C.D. (2011). Rapid range shifts of species associated with high levels of climate warming. Science 333(6045): 1024-1026.
[7]. Cheng, L., Lek, S., Lek-Ang, S., Li, Z. (2012). Predicting fish assemblages and diversity in shallow lakes in the Yangtze River basin. Limnologica-Ecology and Management of Inland Waters, 42(2): 127-136.
[8]. Dawson, T.P., Jackson, S.T., House, J.I., Prentice, I.C., Mace, G.M. (2011). Beyond predictions: biodiversity conservation in a changing climate. Science, 332(6025): 53-58.
[9]. DOE Markazi. (2010). Natural Features Atlas of Markazi Province. Publisher: NAQSH-E MANA by Order of Department of Environment Markazi. (in Farsi).
[10]. DOE Markazi. (2017). Report of census on the population of mammals in the Haftad-Gholleh protected area. http://markazi.doe.ir/Portal/. (in Farsi).
[11]. Granados, A., Brodie, J.F., 2016. Persistence of tropical Asian ungulates in the face of hunting and climate change. In: Sankaran, M., Ahrestani, F. (Eds.), the Ecology of Large Herbivores in South and Southeast Asia. Springer-Verlag, Berlin, Germany, 223-235.
[12]. Grenouillet, G., Buisson, L., Casajus, N., Lek, S. (2011). Ensemble modelling of species distribution: the effects of geographical and environmental ranges. Ecography, 34(1), 9-17.
[13]. Haynes, M.A., Kung, K.S., Brandt, J.S., Yongping, Y., Waller, D.M.(2014). Accelerated climate change and its potential impact on yak herding livelihoods in the eastern Tibetan plateau. Climatic Change, 123: 147-160.
[14]. Hijmans, R., Cameron, S., Parra, J., Jones, P.J. (2004). The worldclim interpolated global terrestrial climate surfaces. Version1.3.
[15]. Hole, D.G., Willis, S.G., Pain, D.J., Fishpool, L.D., Butchart, S.H.M., Collingham, Y.C., Huntley, B. (2009). Projected impacts of climate change on a continent- wide protected area network. Ecology Letters, 12: 420-431.
[16]. Hosseini, S.M., Fazilati, M., Moulavi, F., Foruzanfar, M., Hajian, M., Abedi, P. (2009). Reproductive potential of domestic Ovis Aries for preservation of threatened Ovis orientalis isphahanica: In vitro and in vivo studies. European Journal of Wildlife Research, (55), 239-246.
[17]. Intergovernmental Panel on Climate Change, (2014). Climate Change 2014–Impacts, Adaptation and Vulnerability: Regional Aspects. Cambridge University Press, 650 pp.
[18]. Jowkar, H., Ostrowski, S., Tahbaz, M., Zahler, P. (2016). The conservation of biodiversity in Iran: threats, challenges and hopes. Iran Stud, 49, 1065–1077.
[19]. Kafash, A., Kaboli, M., Koehler, G. (2014). Predicting the impacts of climate change on the Mesopotamian Spiny-tailed Lizard (Saara loricata): Using maximum entropy algorithm and Bioclim. Journal of Animal Biology, 7(1), 75-82
[20]. Kafash, A., Kaboli, M., Koehler, G., Yousefi, M., Asadi, A. (2016). Ensemble distribution modeling of the Mesopotamian spiny-tailed lizard, Saara loricata (Blanford, 1874), in Iran: an insight into the impact of climate change.Turkish Journal of Zoology, 40(2), 262-271.
[21]. Karami, M., Ghadirian, T., Faizolahi, K. (2012). The atlas of mammals of Iran. Department of Environment, Tehran.
[22]. Kumar, S., Stohlgren, T.J., (2009). Maxent modeling for predicting suitable habitat for threatened and endangered tree Canacomyrica monticola in New Caledonia. Journal of Ecology and Natural Environment, 4(1), 31-33.
[23]. Lamsal, P., Kumar, L., Aryal, A., Atreya, K., 2018. Future climate and habitat distribution of Himalayan Musk Deer (Moschus chrysogaster). Ecological Informatics, 44, 101-108.
[24]. Luo, Z., Jiang, Z., Tang, S. (2015). Impacts of climate change on distributions and diversity of ungulates on the Tibetan Plateau. Ecological Applications, 25(1), 24-38.
[25]. Mack, E.L., Firbank, L.G., Bellary, P.E., Hinsley, S.A., Veitch, N. (1997). The comparison of remotely sensed and ground-based habitat area data using species-area models. Applid Ecology, 91: 4222-4223.
[26]. Morovati, M., Kaboli, M., Panahandeh, M., Sarbaz, M., Ahmadian, S. (2017). Modeling the Habitat suitability of Cheetah (Acinonyx jubatus venaticus) under the influence of climate change in Iran using software MAXENT. Journal of Animal Environment, 9(1): 13-20.
[27]. Pereira, H.M., Leadley, P.W., Proenca, V., Alkemade, R., Scharlemann, J.P.W., Fernandez Manjarres, J.F. (2010). Scenarios for global biodiversity in the 24st century. Science, 991: 4132-4214.
[28]. Pettorelli, N., Pelletier, F., von Hardenberg, A., Festa-Bianchet, M., Coté, S.D., 2007. Early onset of vegetation growth vs. rapid green- up: Impacts on juvenile mountain ungulates. Ecology, 88: 381-390.
[29]. Pressey, R.L., Cabeza, M., Watts, M.E., Cowling, R.M., Wilson, K.A. (2007). Conservation planning in a changing world. Trends in Ecology & Evolution, 22(11), 583-592
[30]. R Development Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna.
[31]. Salas, E.A.L., Valdez, R., Michel, S., Boykin, K.G. (2018). Habitat assessment of Marco Polo sheep (Ovis ammon polii) in Eastern Tajikistan: Modeling the effects of climate change. Ecology and evolution 8(10), 5124-5138.
[32]. Sexton, J.P., McIntyre, P.J., Angert, A.L., Rice, K.J., 2009. Evolution and ecology of species range limits. Annual Review of Ecology, Evolution, and Systematics, 40, 415-436.
[33]. Sinclair, S., White, M., Newell, G. (2010). How useful are species distribution models for managing biodiversity under future climates? Ecology and Society, 15(1), 8 [online].
[34]. Thuiller, W., Georges, D., Engler, R., Breiner, F., Georges, M.D., Thuiller, C.W. (2016). Package ‘biomod2’. https://cran.r project.org/package=biomod2
[35]. White, K.S., Gregovich, D.P., Levi, T. (2018). Projecting the future of an alpine ungulate under climate change scenarios. Global change biology, 24(3): 1136-1149.
[36]. Williams, S.E., Bolitho, E.E., Fox, S. (2003). Climate change in Australian tropical rainforests: an impending environmental catastrophe. Proc. R. Soc. Lond, 221: 4332-4332.
[37]. Yousefi, M., Ahmadi, M., Nourani, E., Rezaei, A., Kafash, A., Khani, A., Sehhatisabet, M.E., Adibi, M.A., Goudarzi, F., Kaboli, M. (2017). Habitat suitability and impacts of climate change on the distribution of wintering population of Asian Houbara Bustard Chlamydotis macqueenii in Iran. Bird Conservation International, 27(2): 294-304.
[38]. Zhang, M.G., Zhou, Z.K., Chen, W.Y., Slik, J.F., Cannon, C.H., & Raes, N. (2012). Using species distribution modeling to improve conservation and land use planning of Yunnan, China. Biological Conservation, 153: 257–264.
[39]. Ziaie, H. (2008). A Fied Guide to the Mammals of Iran. Tehran, Publishers: Wildlife Reconnaissance Center, 419p.