تعیین سهم کاربری های مختلف اراضی در تولید رسوب تپه های ماسه ای با استفاده از روش انگشت‌نگاری (مطالعه موردی: منطقه گچین بندرعباس)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 کارشناسی ارشد بیابان زدایی، دانشکده منابع طبیعی، دانشگاه زابل

2 دانشیار دانشکده آب و خاک، دانشگاه زابل

3 استادیار دانشکده کشاورزی و منابع طبیعی، دانشگاه هرمزگان

10.29252/aridbiom.2019.1539

چکیده

شناخت منشاء تپه­های ماسه­ای در مطالعات کنترل فرسایش بادی از اهمیت ویژه­ای برخوردار است. به دلیل وجود مشکلات زیاد در کاربرد روش­های سنتی، روش انگشت­نگاری یا به عبارتی منشاءیابی به عنوان روشی جایگزین و مناسب مورد توجه محققین مختلف قرار گرفته است. در این روش خصوصیات فیزیکی، ژئوشیمیایی و آلی رسوب و منابع آن برای تعیین منابع اصلی رسوب و اهمیت نسبی آنها مورد استفاده قرار می‌گیرند.. در این تحقیق سعی شده که با بهره­گیری از ترکیب مناسبی از عناصر ژئوشیمیایی که قادر به جداسازی کاربری­های مختلف اراضی می‌باشند، سهم کاربری­ها در تولید رسوب تپه­­های ماسه­ای در منطقه گچین واقع در شهرستان بندرعباس تعیین شود. ابتدا تعداد 28 نمونه از منابع احتمالی رسوبات و تپه­های ماسه­ای برداشت و سپس دانه­بندی آن­ها انجام شد. بعد از به دست آوردن داده­های مورد نظر، روش­های آماری مانند کروسکال والیس و تحلیل تشخیص برای بررسی توان ردیاب­ها و تعیین ترکیب بهینه از ردیاب­ها انجام گردید. نتایج حاصل از تحلیل تشخیص نشان داد که سه ردیاب P، Na و Mg از بین ردیاب­های P، Na، Mg، Mn، Fe، Zn، Ca، Cu، Ni و K به عنوان ترکیب بهینه جهت جداسازی کاربری­های اراضی در منطقه مناسب هستند. در نهایت با استفاده از مدل­های چند متغیره ترکیبی در تولید منابع رسوب، سهم کاربری­های اراضی کشاورزی، جنگل­های دست­کاشت، مرتع و اراضی بایر به ترتیب برابر 85/2، 85/2، 25/31 و 05/63 به دست آمد. خطای نسبی مدل ترکیبی برای برآورد سهم کاربری­های مختلف در تولید رسوب برابر 65/7 درصد و ضریب کارایی مدل 35/92 درصد محاسبه شد. مقادیر خطای نسبی و کارایی مدل، نشان­دهنده این هستند که روش انگشت­نگاری توانایی بالایی در تفکیک منابع تولیدکننده رسوب دارد.

کلیدواژه‌ها


[1]. Abbasi, M., Feiznia, S., Ahmadi, H., & Kazmei, Y. (2012). Study of Sand Dunes Origin by Geochemical Trades of Eolian Sediment in Niatak. Arid Biom Scientific and Research Journal, 1, 34-44. (in Farsi).
 [2]. Amini, A., Moussavi-Harami, R., Lahijani, H., & Mahboubi, A. (2012). Sedimentological, geochemical and geomorphological factors in formation of coastal dunes and nebkha fields in Miankaleh coastal barrir system (Southeast of Caspian Sea, North Iran). Geosciences Journal, 16, 139-152.
[3]. Collins, A. L., & Walling, D. E. (2002). Selecting fingerprint properties for discriminating potential suspended sediment sources in river basins. Journal of Hydrology, 261(1-4), 218-244.
[4]. Collins, A. L., Walling, D. E., Sichingabula, H. M., & Leeks, G. J. L. (2001). Suspended sediment source fingerprinting in a small tropical catchment and some management implications. Applied Geography, 21, 387-412.
[5]. Dolatkurdestani, M., Gholami, H., Ahmadi, S. J., Walling, D. E., & Fathabadi, A. (2018). Approtionment sources of sand dune sediments by fingerprinting method (Case study: Juzmorian region, south of Kerman province). Quantitative Geomorphological Researches, 6, 1-14. (in Farsi)
[6]. Feiznia, S., Pourtayeb, F., Ahmadi, H., & Shirani, K. (2016). Source finding of sediments around Gavkhuni using geochemical method. Iranian Journal of Rangeland and Desert Research, 22, 695-710. (in Farsi)  
[7]. Foster, I. D. L., & Lees, J. A. (2000). Tracers in geomorphology. Chicheste: Wiley, 3-20.
[8]. Gholami, H., Feiznia, S., Ahmadi, S. J., Ahmadi, H., Nazari Samani, A. A., & Nohegar, A.(2015). The Contribution of Different Geomorphologic Facies in Sand Dunes Sediments Supply Using Sediments Tracing (Case Study: Ashkzar Sand Dunes). Desert Management, 4, 31-42. (in Farsi).
[9]. Gruszowski, K. E., Foster, I. D. L., Lees, J. A., & Charlesworth, S. M. (2003). Sediment sources and transport pathways in a rural catchment, Herefordshire, UK. Hydrological Processe. 17, 2665–2681.
[10]. Hair, J. F., Andersen, R. E., Tatham, R. L., & Black, W. C. (1998). Multivariate Data Analysis. New Jersey, Prentice Hall.
 [11]. Hakimkhani, S., Ahmadi, H., Ghayoumian, J., & Nazarnaghad, H. (2007). Determining The Contribution of Land Uses to Sediment Yield Fingerprinting Method (Case Study: Pouldasht Basin, Mako, Iran). Iranian Journal of Soil and Waters Sciences. 2, 301-313. (in Farsi).
[12]. Mu'tamed, A. (2003). General Geology. University of Tehran. (in Farsi).
[13]. Nash, J. E., & Sutcliffe, J. E. (1970). River flow forecasting through conceptual models. Journal of Hydrology. 10, 282-290.
[14]. Nosrati, K., Ahmadi, H., & Sharifi, F. (2012). Sediment Sources Fingerprinting: Relation between Enzyme Activities in Soil and Sediment. Technol. Agric. &Natur. Resour., Water and Soil Science. 60, 227-237. (in Farsi).
 [15]. Rashki, N., fakhire, A. A., Basirani, N., Shahriari, A., & Pahlavanravi, A. (2011). Study of Sand Dunes Origin in Konarak Region. Sabzineh Journal. 58, 19-23. (in Farsi).
[16]. Sadeghineghad, A. (2010). Study of Sediment Source Origin in Narmashir, Bam Basin. Natural Resources College. University of Tehran. (in Farsi).
[17]. Walling, D. E. (2005). Tracing suspended sediment sources in catchments and river systems. Science of the Total Environment, 344(1-3), 159-184.
[18]. Wasklewicz, T. A., & Meek, N. (1995). Provenance of aeolian sediment: the Upper Coachella Valley, California. Physical Geography, 6, 539–556.
[19]. Wasson, R. J., Caitcheon, G., Murry, A. S., Mcculloch, M., & Quade, J. (2002). Sourcing sediment using multiple tracers in the catchment of Lake Argyle, Northwestern Australia. Environmental Management, 29, 634-646.