اثر کم آبی بر زنده مانی، رشد، تبادلات گازی و روابط آبی نهال های سرو نقره ای و سرو شیراز

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانش آموخته کارشناسی ارشد، گروه جنگلداری، دانشکده منابع طبیعی و علوم دریایی نور، دانشگاه تربیت مدرس

2 استاد گروه جنگلداری، دانشکده منابع طبیعی و علوم دریایی نور، دانشگاه تربیت مدرس

3 استادیار مرکز تحقیقات کشاورزی و منابع طبیعی استان مازندران، سازمان تحقیقات، آموزش و ترویج کشاورزی

10.29252/aridbiom.8.1.49

چکیده

امروزه توسعه فضای سبز با گونه­های زینتی جنس سرو در بسیاری از نقاط کشور، به ویژه مناطق خشک، بسیار رایج است. با توجه به محدودیت­ منابع آب در مناطق خشک، تحقیقات در مورد پاسخ این گونه­ها به مسئله خشکی ضروری است. این تحقیق با هدف بررسی چگونگی پاسخ­های زنده­مانی، رشد، تبادلات گازی و روابط آبی نهال­های دو گونه سرو نقره­ای (Cupressus arizonica) و سرو شیراز (C. sempervirens var. fastigiata) به شرایط کم آبی انجام شد. تحقیق در قالب طرح بلوک­های کامل تصادفی با سه سطح آبیاری (سه، شش و نه روزه) در سه تکرار انجام شد. نتایج نشان داد که کم­آبی بر بیشتر صفات مورد مطالعه نهال­ها اثر معنی­دار داشت، به­طوری­که زنده­مانی نهال­های سرو شیراز در دوره آبیاری نه روزه افت 2/50 درصدی پیدا کرد. این در حالی است که در سرو نقره­ای، هیچ نهالی دچار مرگ­و­میر نشد. با اعمال خشکی، رویش‌های طولی و قطری در هر دو گونه کاهش قابل توجهی یافت اما نهال­های سرو نقره­ای، رویش طولی بیشتری (در آبیاری شش روزه 47 درصد و در آبیاری نه روزه 43 درصد) نسبت به نهال­های سرو شیراز دارا بود. با افزایش خشکی، فعالیت­های فتوسنتز، هدایت روزنه­ای و پتانسیل آبی نهال­ها با کاهش مواجه شدند، ولی مقدار غلظت CO2 بین سلولی (Ci) و دمای برگ تغییری نکرد. تعرق و محتوای نسبی آب برگ به میزان قابل ملاحظه­ای در هر دو گونه کاهش یافت اما در سرو نقره­ای کاهش تعرق در آبیاری شش روزه، 12 درصد و در آبیاری نه روزه، 3/32 درصد کمتر از سرو شیراز بود. در مجموع، می­توان اظهار داشت که نهال­ سرو نقره­ای نسبت به تنش کم­آبی مقاوم­تر از نهال­ سرو شیراز است.

کلیدواژه‌ها


 [1]. Ahmadi, A. Siosemardeh, A. (2005). Investigation on the physiological basis of grain yield and drought resistance in wheat: leaf photosynthetic rate, stomatal conductance, and non-stomatal limitations, International Journal of Agriculture and Biology. 7: 807-811.
[2]. Ashkavand, P., Tabari Kouchaksaraei, M., & Zarafshar, M. (2014). Assessment of drought resistance in hawthorn and mahaleb seedlings with emphasis on biochemical parameters. Zagros Forests Researches. 1 (1): 1-18. (in Farsi).
[3]. Assadi, M., Khatamsaz, M., Maassomi, A.A., & Mozafarian, V. (1998). Flore of Iran, No, 21, Tehran: Research Institute of Forest and Rangelands, pp: 8-9.
[4]. Bahmani, M.,  Jalali, Gh.A.,  Asgharzade, A., Tabari,M., & Sadati, S. E. (2015). Gas exchange recovery of Calotropis procera Ait. seedling in different irrigation periods. Arid Biome. 4 (2): 28-38. (in Farsi).
[5]. Bartlett, MK., Scoffoni, C., & Sack, L. (2012). The determinants of leaf turgor loss point and prediction of drought tolerance of species and biomes: a global meta-analysis. Ecology Letters, 15(5):393–405.
[6]. Borghi, M., Tognetti, R., Monteforti, G., & Sebastiani, L. (2008). Responses of two poplar species (Populus alba and Populus x canadensis) to high copper concentrations, Environmental and Experimental Botany, 62 (3): 290-299.
[7]. Deligoz, A., & Gur, M. (2015). Morphological, physiological and biochemical responses to drought stress of Stone pine (Pinus pinea L.) seedlings. Acta Physiologiae Plantarum, 37(11): 1-8.
[8]. Ditmarova, L., Kurjak, D., Palmroth, S., Kmet, J., & Strelcova, K. (2009). Physiological responses of Norway spruce (Picea abies) seedlings to drought stress. Tree Physiology, pp116.
[9]. Echevarria-Zomeno, S., Ariza, D., Jorge, I., Lenz, C., Del Campo, A., Jorrin, J.V., & Navarro, R.M. (2009). Changes in the protein profile of Quercus ilex leaves in response to drought stress and recovery. Journal of Plant Physiology, 166 (3): 233-245.
[10]. Ehsani Tabatabaei, F. 2006. Plant Stresses of Physiology. Payam Noor University Press.
[11]. Farooq, M., Wahid, A., Kobayashi, N., Fujita, D., & Basra, S.M.A. (2009). Plant drought stress: effects, mechanisms and management. In Sustainable Agriculture. Springer Netherlands. 153-188 pp.
[12]. Galle, A., Haldimann, P., & Feller, U. (2007). Photosynthetic performance and water relations in young pubescent oak (Quercus pubescens) trees during drought stress and recovery. New Phytologist, 174 (4): 799-810.
[13]. Guo, J., Yang, Y., Wang, G., Yang, L., & Sun, X. (2010). Ecophysiological responses of Abies fabri seedlings to drought stress and nitrogen supply. Physiologia Plantarum, 139(4), 335-347.
[14]. Hassan, I.A. 2006. Effects of water stress and high temperature on gas exchange and chlorophyll fluorescence in Triticum aestivum L, Photosynthetica, 44(2): 312-315.
[15]. Javadi, T., & Bahramnejad, B. (2011). Relative water content and gas exchange Pyrus syriaca genotypes under water stress conditions. Horticulture Sciences, 24(2): 223-233. (in Farsi).
[16] Jinying, L., Min, L., Yongmin, M. & Lianying, S. (2007). Effects of vesicular arbuscular mycorrhizae on the drought resistance of wild jujube (Zizyphus spinosus Hu.) seedlings. Frontiner Agriculture China. 1(4): 468-471.
[17]. Kalefetoglu, T., & Ekmekc, I.Y. (2005). The effect of drought on plants and tolerance mechanisms. Gazi. University Journal of Science. 18(4):723–740.
[18]. Krasensky, J., & Jonak C. (2012). Drought, salt, and temperature stress induced metabolic rearrangements and regulatory networks. Journal of Experimental Botany. 63: 1593-1608.
[19]. Mirzaei, J., & Kermanshahi, A. (2015). Effects of drought stress on growth and physiological characteristics of (Pistacia atlantica) seedlings. Journal of Wood and Forest Science and Technology, 22 (1): 31-43. (in Farsi).
[20]. Nasri, M., Heidari Sharifabad, H., Shiranirad, A., Majidi harvan, A., & Zamanzadeh, H. (2006). Effect of drought stress on physiological characteristics of canola cultivars. Agricultural Sciences, 1(12):127-134.
[21]. Norouzi Haroni, N., & Tabari kouchaksaraei, M. (2015). Morpho-physiological responses of  black locust (Robinia pseudoacacia L.) seedlings to drought stress. Journal of Forest and Wood Products, 68(3): 715-727. (in Farsi).
[22]. Sadati, S.E. & Tabari, M. (2013). Vegetative characteristics and water potential of seedlings plantation Populus caspica a year after the drought stress, The First National Conference on Plant Stress, University of Esfahan, 1-6. (in Farsi).
[23]. Sanchez-Blanco, M.J., Ferrandez, T., Morales, M., Morte, A., & Alarcon, J.J. (2004). Variations in water status, gas exchange, and growth in Rosmarinus officinalis plants infected with Glomus deserticola under drought conditions. Journal of Plant Physiology, 161: 675-682.
[24]. Sanchez-Blanco, M.J., Alvarez, S., Navarro, A., & Banon, S. (2008). Changes in leaf water relations, gas exchange, growth and flowering quality in potted geranium plants irrigated with different water regimes, Journal of Plant Physiology, 166(5): 467-476.
[25]. Saxton, K.E., Rawls, W.J., Romberger, J.S., & papendick, R.I. (1986). Estimating generalized soil-water characteristics from texture. Soil Science Society of America Journal, 50(4):1031-1036.
[26]. Siosemardeh, A., Ahmadi, A., Poustini, K., Ebrahimzadeh, H. (2003). Stomatal and nonstomatal Limitations to photosynthesis and their relationship with drought resistance in wheat Cultivars. Iranian Journal of Agriculture of Science, 34, 94-105 (in in Farsi).
[27]. Tian, X., Lei, Y. 2006. Nitric oxide treatment alleviates drought stress in wheat seedlings. Biology Plant, 50: 775-778.
 [28]. Wahid, A. Rasul. E. (2005). Photosynthesis in leaf, stem, flower and fruit. In: Pessarakli M. (Ed.), Handbook of Photosynthesis, Second Edition. CRC Press, Florida, 479–497.
[29]. Wang, C.J., Yang, W., Wang, C., Gu, C., Niu, D.D., Liu, H.X., Wang, Y.P., & Guo, J.H. (2012). Induction of drought tolerance in cucumber plants by a consortium of three plant growth promoting rhizobacterium strains. PlOS One, 7(12): e52565-.
[30]. Zarafshar, M., Akbarinia, M., Hosseini, S.M. & Rahaei, M. (2016). Drought resistance of wild pear (Pyrus boisseriana Buhse.). Journal of Forest and Wood Products, 69 (1): 97-110.
[31]. Zare, (2001). Native species and Non-native conifers in Iran. Publishing Research Institute forests, and rangelands, Tehran, 470p. (in in Farsi). 
[32]. Zhou B, Gou Z, Liu Z (2005). Effects of abscisic acid on antioxidant systems of Stylosanthes guianensis (Aublet) Sw. under chilling stress. Crop Science, 45:599–605.