[1]. Baker, W. L. (1989). A review of models of landscape change. Landscape Ecology, 2: 111-133.
[2]. Balzter, H. (2000). Markov chain models for vegetation dynamics. Ecological Modelling, 126: 139-154.
[3]. Bell, E. J. (1974). Markov analysis of land use change: Application of stochastic processes to remotely sensed data. Socioeconomic PlanningSciences, 8: 311–316
[4]. Brown, D. G, B. C. Pijanowski., &. Duh, J. D. (2000). Modelling the relationships between land use and land cover on private lands in the Upper Midwest, USA. Journal of Environmental Management, 59: 247-263.
[6]. Dong Jie, G., HaiFeng, L., Takuro, I., Weici, S., Tadashi, N., & Kazunori, H. (2001). Modeling urban land use change by the integration of cellular automaton and Markov model. Ecological Modelling, 3761-3772.
[7]. Eastman, J.R. (2006). Idrisi for windows user’s guide ver.32. Clark University, 328 p.
[8]. Gilks, W. R. (1996). Markov Chain Monte Carlo in Practice. Chapman & Hall/CRC.
[9]. Gil-Sáncheza, L., Garriguesa, J., Garcia-Breijoa, E., Graub, R., Marta, A., Baigtsb, D., & Baratb, J. M. (2015). Artificial neural networks (Fuzzy ARTMAP) analysis of the data obtained with an electronic tongue applied to a ham-curing process with different salt formulations.
Applied Soft Computing, 30: 421-429.
[10]. Hathout, S. (2002). The use of GIS for monitoring and predicting urban growth in East and West St Paul, Winnipeg, Manitoba, Canada. Journal of Environmental Management, 66: 229-238.
[11]. He, Z., & Lo, C. (2007). Modeling urban growth in Atlanta using logistic regression. Computers. Environment and Urban Systems, 31 (6): 667-688.
[12]. Jenerette Darrel, G., & Wu, J. (2001). Analysis and simulation of land use change in the central Arizona-Phonix region, USA. Landscape ecology, 16: 611-626.
[13]. Jensen, J.R. (2007). Remote Sensing of the Environment: An Earth Resource Perspective. Pearson Prentice Hall, 592 pp.
[14]. Khoshgoftar, M.M., Talei, M., & Malekpour, P. (2010). Spatio-temporal modeling of urban sprawl: an approach based on integrating cellular automata and Markov chains. Proceedings of Geomatics (National Conference & Exhibition), 9 pp. (in Farsi).
[15]. Koomen, E., Stillwell, J., Bakema, A. & Scholten, H.J. (2007). Modelling Land-use Change, Progress and Applications. Netherlands, Springer, 410 p.
[16]. Lambin, E.F. (1997). Modelling and monitoring land-cover change processes in tropical regions. Progress in Physical Geography, 21: 375–393.
[18]. Norris, J.R. (1997). Markov Chains. Cambridge University Press, 237 p.
[19]. Parker, D.C., Manson, S.M., Janssen, M. A., Hoffmann, M. J., & Deadman, P. (2003). Multi agent systems for the simulation of land use and land cover change: A Review. Annals of the Association of American Geographers, 43: 314–337.
[20]. Peterson, L.K., Bergen, K.M., Brown, D.G., Vashchuk, L., & Blam, Y. (2009). Forested land-cover patterns and trends over changing forest management eras in the Siberian Baikal region. Forest Ecology and Management, 257: 911-922.
[21]. Stéphenne, N., & Lambin, E.F. (2001). A dynamic simulation model of land-use changes in Sudano-sahelian countries of Africa (SALU). Agriculture, Ecosystems and Environment, 85: 154–161.
[22]. Tudun-Wada1, M.I., Tukur, Y.M., Hussaini, Y., Sani1, M.Z., Musa, I., & Lekwot, V.E. (2014). Analysis of forest cover changes in Nimbia Forest Reserve, Kaduna State, Nigeria using Geographic Information System and Remote Sensing techniques. International Journal of Environmental Monitoring and Analysis, 2(2): 91-99.
[23]. Weng, Q. (2002). Land use change analysis in the Zhujiang Delta of China using satellite remote sensing, GIS and stochastic modeling. Journal of Environmental Management, 64: 273-284.
[24]. Wu, Q., Li, H.Q., Wang, R.S., Paulssen, J., He, Y., Wang, Min., Wang, B.H., & Wang, Z. (2006). Monitoring and predicting land use change in Beijing using remote sensing and GIS, Landscape and urban planning, Article in press.