[1]. Abaaszade, P., Sharifi, A., Lebaschi, H., & Moghadasi, F. (2007). Effect of drought stress on prolin, soluble sugars, Chlorophyll and RWC level in Melissa oggicinalis. Iranian Journal of Medicinal and Aromatic Plants Researc, 4, 504–513, (in farsi).
[2]. Aghaei, K., Ehsanpour, A. A., & Komatsu, S. (2008). Proteome Analysis of Potato under Salt Stress. Journal of Proteome Research, 7, 4858–4868, (in Parsi).
[3]. Allagulova, C. R., Gilamov, F. R., Shakirova, F. M., & Vakhitov, V. A. (2003). The plant dehydrins: structure and functions. Biochemistry, 68, 945-951.
[4]. Arnon, D.I. (1949). Copper enzymes in isolated thloroplasts.Polyphenoloxidase in Beta vulgans. Plant Physiology, 24, 1-15.
[5]. Astorga, G. I., & Melendez, L.A. (2010). Salinity effects on protein content, lipid peroxidation, pigments and proline in Paulownia imperialis and Paulowina fortune grown in vitro. Electronic Journal of Biotechnology, 5, 115.
[6]. Beinsan, C., Camen, D., Sumalan, R., & Babau, M. (2003). Study concerning salt stress effect on leaf area dynamics and chlorophyll content in four bean local landraces from Banat areas. Faculty of Horticulture, 119, 416-419.
[7]. Bensen, R. J., Boyer, J.S., & Mullet, J.E. (1988). Water deficit-induced changes in abscisic acid, growth, polyamines, translatable RNA in soybean hypocotyls. Plant Physiology, 88, 289-294.
[8]. Biamonti, G., & Caceres, J. F. (2009). Cellular stress and RNA splicing. Trends in Biochemical Sciences, 34, 146-153.
[9]. Bjorkman, O., & Powles, S.B. (1998). Inhibition of photosynthetic reactions under water stress: interaction with light level. Planta, 161, 490-504.
[10]. Bradford, M.M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248-254.
[11]. Bray, E.A. (1997). Plant responses to water deficit. Trends in Plant Sciences, 2, 48-54.
[12]. Bray, E.A. (2002). Classification of genes differentially expressed during water-deficit stress in Arabidopsis thaliana: an analysis using microarray and differential expression data. Annuals of Botan, 89, 803-811.
[13]. Chaves, M.M., Flexas, J., & Pinheiro, C. (2009). Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Annals of Botany, 103, 551–560.
[14]. Chen, C., & Dickman, M.B. (2005). Proline suppresses apoptosis in the fungalpathogen colletotrichum trifolii. Proceeding of the National Academy of Science USA, 102, 3459-3464.
[15]. Cherian, S., Reddy, M.P., & Ferreira, R.B. (2006). Transgenic plants with improved dehydration stress tolerance: Progress and future Prospects. Biologia Plantarum, 50, 481-495.
[16]. Creelman, R.A., Mason, H.G., Bensen, R.J., Boyer, J.S., & Mullet, J.E. (1990). Water deficit and abscisic acid causes inhibition of shoots versus root growth in soybean seedlings: Analysis of growth, sugar accumulation and gene expression. Plant Physiology, 92، 205-214.
[17]. Cruz de Carvalho, M.H., Arcy-Lameta, A., Roy-Macauley, H., & Gareil, M. (2001). Aspartic proteinase in leaves of common bean (Phaseolus vulgaris L.) and cowpea (Vigna unguiculata L.): enzymatic activity، gene expression and relation to drought susceptibility. FEBS Letters, 492, 242-246.
[18]. Egert, M., & Tevini, M. (2002). Influence of drought on some physiological parameters symptomatic for oxidative stress in leaves of chives (Allium schoenoprasum). Environmental and Expperimental Botany, 48, 43-49.
[19]. Fales, F.W. (1951). The assimilation and degradation of carbohydrates by yeast cells. Journal of Biological Chemistry, 193, 113-124
[20]. Farooq, M., Wahid, A., Kobayashi, N., & Fujita, D. (2009). Plant drought stress: effects، mechanisms and management. Agronomy for Sustainable Development, 29, 185-212.
[21]. Fu, J., & Huang, B. (2001). Involvement of antioxidants and lipid peroxidation in the adaptation of two cool-season grasses to localized drought stress. Environmental Experimental Botany, 45, 105-114.
[22]. Grudkowska, M., & Zagdañska, B. (2004). Multifunctional role of plant cysteine proteinases. Acta Biochimica Polonica, 51, 609-624.
[23]. Gupta, S. C., Sharma, A., Mishra, M., Mishra, R., & Chowdhuri, D. K. (2010). Heat shock proteins in toxicology: how close and how far? Life Sciences, 86, 377-384.
[24]. Hajheidari, M., Abdollahian-Noghabi, M., Askari, H., Heidari, M., Sadeghian, S. Y., Ober, E. S., & Salekdeh, G. H. (2005). Proteome analysis of sugar beet leaves under drought stress. Proteomics, 5, 950-960, (in farsi).
[25]. Hanson, A. D., & Hitz, W. D. (1982). Metabolic responses of mesophytes to plant water deficit. Annual Review of Plant Physiology, 33, 163-203.
[26]. Hendry, G. (1993). Evolutionary origins and natural functions of fructanc. New Phytologist, 123, 3-14.
[27]. Herbinger, K., Tausz, M., Wonisch, A., Soja, G., Sorger, A., & Grill, D. (2002). Complex interactive effects of drought and ozone stress on the antioxidant defence systems of two wheat cultivars. Plant Physiology and Biochemistry, 40, 691-696.
[28]. Ingram, J., & Bartels, D. (1996). The molecular basis of dehydration tolerance in plants. Annual Review of Plant Physiology and Plant Molecular Biology, 47, 377-403.
[29]. Jinyo, D., Xiaoyang, C., Wei, L., & Qiong, G. (2004). Osmoregulation mechanism of drought stress and genetic engineering stretegies for improving drought resistance in plants. Forestry Studies in China, 6, 56-62.
[30]. Kage, H., Kochler, M., & Stutzel, H. (2004). Root growth and dry matter partitioning of Cauliflower under drought stress conditions: measurement and simulation, European Journal of Agronom, 20, 379-394.
[31]. Kerepesi, I., & Galibra, G. (2000). Osmotic and salt stress-induced alteration in soluble carbohydrate content in wheat seedlings. Crop Science, 44, 482-487.
[32]. Kiyosue, T., Yoshiba, Y., Yamagushi-Shinozalad, K., & Shinozaki, K. (1996). A nuclear gene encoding mitochondrial proline dehydrogenase، an enzyme involved in proline metabolism, is upregulated by proline but downregulated by dehydration in Arabidopsis. Plant Cell, 8, 323-1335.
[33]. Kpyoarissis, A., Petropoulou, Y., & Manetas, Y. (1995). Summer survival of leaves in a soft-leaved shrub (Phlomis fruticosa L.) under Mediterranean field conditions: avoidance of photoinhibitory damage through decreased chlorophyll contents. Journal of Experimental Botany, 46, 1825-1831.
[34]. Kraus, T.E., Mckersie, B.D., & Fletcher, R.A. (1995). Paclobutrazole induced tolerance of wheat leaves to paraquat may involve antioxidant enzyme activity. Journal of Plant Physiology, 145, 570-576.
[35]. Leport, L., Turner, N.C., French, R.J., Barr, M.D., Duda, R., Davies, S.L., Tennant, D., & Siddique, K.H.M. (1999). Physiological responses of chickpea genotypes to terminal drought in a Mediterranean type environment. European Journal of Agronomy, 11, 279-291.
[36]. Lindquist, S., & Crig, E.A. (1998). The heat-shock proteins. Annual Review ofGenetics, 22, 631-677.
[37]. Matysik, J., Alia, B.B., & Mohanty, P. (2002). Molecular mechanisms of quenching of reactive oxygen species by proline under stress in plants. Current Science, 82, 525-532.
[38]. Mishra, S., & Dubey, R.S. (2006). Inhibition of ribonuclease and protease activities in arsenic exposed rice seedlings: role of proline as enzyme protectant. Journal of Plant Physiology, 163, 927-936.
[39]. Mohammadkhani, N., & Heidari, R. (2008). Effect of drought stress on soluble proteins in two maize varieties. Turkish Journal of Biology, 32, 23-30, (in farsi).
[40]. Mohsenzade, S., Malboobi, M. A., Razavi, K., & Farrahi Aschtiani, S. (2006). Physiological and molecular responses of Aeluropus lagopoides (poaceas) to water deficit. Environmental and Experimental Botany, 56, 374-322, (in farsi).
[41]. Morgan, J. M. (1992). Osmotic components and properties associated with genotypic differences in osmoregulation in wheat. Australian Journal of Plant Physiology, 19, 67-76.
[42]. Murashige, T., & Skoog, F. (1962). A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiologia Plantarum, 15, 473-497.
[43]. Pagter, M., Bragato, C., & Brix, H. (2005). Tolerance and physiological responses of phragmites australis to water deficit. Aquatic Botany, 81, 285-299.
[44]. Paul, M., & Hasegava, A. (1996). Plant cellular and molecular responses to high salinity. Plant Physiology and Plant Molecular Biology, 51, 463- 499.
[45]. Penna, S. (2003). Building stress tolerance drought over-producing trehalose in transgenic plants. Trends in Plant Science, 8, 355-357.
[46]. Pinheiro, C., Chaves, M. M., & Ricardo, C. P. (2001). Alterations in carbon and nitrogen metabolisminduced by water deficit in the stems and leaves of Lupinus albus L. Journal of Experimental Botany, 52, 1063-1070.
[47]. Rahdari, P., & Hoseini, S.A. (2012). Drought Stress: A Review. International journal of Agronomy and Plant Production, 3, 443-446.
[48]. Ranganayakulu, G.S., Veeranagamallaiah, G., & Sudhakar, C. (2013). Effect of salt stress on osmolyte accumulation in two groundnut cultivars (Arachis hypogaea L.) with contrasting salt tolerance. African Journal of Plant Science, 7, 586-592.
[49]. Rayaptai, P.J., & Stewart, C.R. (1991). Solubilization of proline dehydrogenase from maize (Zea mays L.) mitochondria. Plant Physiology, 95, 787-791.
[50]. Razavizade, R., Ehsanpour, A.A., Ahsan, A., & Komatsu, S. (2009). Proteome analysis of tobacco leaves under salt stress. Peptides, 30, 1651-1659, (in farsi).
[51]. Razavizadeh, R., (2009) Effect of P5CS expression on some physiological and proteomics of transgenic tobacco (Nicotiana tabacum L. cv. Wisconsin) under in vitro salt stress. PhD Thesis, University of Isfahann
[52]. Reddy, A.R., Chaitanya, K.V., & Vivekanandan, M. (2004). Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants. Journal of Plant Physiology, 161, 1189-1202.
[53]. Sairam, R.K. (1994). Effect of moisture stress on physiological activities of two contrasting wheat genotypes. Indian Journal of Experimental Biology, 32, 594-597.
[54]. Sairam, R. K., Deshmukh, P.S., & Saxna, D.C. (1998). Role of antioxidant systems in Wheat genotype tolerance to water stress. Biologia Plantrum, 41, 387-394.
[55]. Santos, C. (2004). Regulation of chlorophyll biosynthesis and degradation by salt stress in sunflower leaves. Scientia Horticulturae, 103, 93-99.
[56]. Sato, Y., Kawabuchi, S., Irimoto, Y., & Miyawaki, O. (2004). Effect of water activity and solvent-ordering on intermolecular interaction of high-methoxyl pectins in various sugar solutions. Food Hydrocolloids, 18, 527-534.
[57]. Siddiqi, E.H., Ashraf, M., Hussain, M., & Jamil, A. (2009). Assessment of intercultivar variation for salt tolerance in safflower (Carthamustinctorius L.) using gas exchange characteristics as selection criteria. Pakistan Journal of Botany, 41, 2251-2259.
[58]. Siripornadulsil, S., Traina, S., Verma, P.D.S., & Sayre, R.T. (2002). Molecular mechanism of proline mediated tolerance to toxic heavy metals in transgenic microalgae. Plant Cell, 14, 2837-2847.
[59]. Tahir, M.H.N., & Mehdi, S.S. (2001). Evaluation of open pollinated sunflower (Helianthus annuus L.) populations under water stress and normal conditions. International Journal of Agriculture and Biology, 3, 236-238.
[60]. Tayebi, A., Afshari, H., Farahvash, F., Sinki, M.J., & Nezarat, S. (2012). Effect of drought stress and different planting dates on safflower yield and its components in Tabriz region'. Iranian Journal of Plant Physiology, 2, 445–453, (in farsi).
[61]. Williams، J.H.H.، William، S.A.L.، Pollock، C.J., & Farrar، G.F. (1992). Regulation of leaf metabolism by sucrose. Plant Physiology, 39، 443-446.
[62]. Yamada, M., Morishita, H., Urano, K., Shiozaki, N., Yamagushi-Shinozaki, K., Shinozaki, K., & Yoshiba, Y. (2005). Effects of free proline accumulation in petunias under drought stress. Journal of Experimental Botany, 56, 1975-1981.
[63]. Yamchi, A., Rastgar Jazzii, F., Ghobadi, C., Mousavi, A., & Karkhanehee, A.A. (2005). Increasing of tolerance to osmotic stresses in tobacco Nicotiana tabacum cv. Xanti through overexpression of p5cs gene. Journal of Scince and Tecnologyof Agriculture and Natural Resources, 8, 40-49, (in Farsi).