Effect of drought stress on transgenic tobacco (Nicotinia tabacum L. cv. Wisconsin) plants containing P5CS gene under in vitro culture

Document Type : Research Paper

Authors

1 MSc Student of Plant Physiology, Department of Biology, University of Isfahan

2 Professor Department of Biology, University of Isfahan

Abstract

In this study، to evaluate the effects of drought stress on transgenic tobacco (Nicotinia tabacum L. cv. Wisconsin) containing P5CS gene and non transgenic plants under in vitro culture, these plants were grown on MS media containing 0، 5، 10، 20 and 30% PEG for 28 days. To select the drought tolerant and sensitive plants and also the mechanisms of drought tolerance in transgenic tobacco plants parameters such as wet and dry weight and photosynthetic pigments content (chlorophyll a، b، total chlorophyll and carotenoid), soluble sugars and total soluble protein content were measured 28 days after PEG treatment. Results indicated that reduction of wet and dry weights and photosynthetic pigments content in transgenic plants were lower than the non transgenic plants.  Soluble carbohydrates in both plants in 10 and 20% concentrations, significantly increased. Total soluble protein content were decreased in non transgenic plants in 30% PEG, and remained unchanged in transgenic plants. SDS-PAGE results in leaves showed different protein patterns between transgenic and non transgenic plants and also between treated and non treated plants for example, protein bands about 35 and 45 KD, Proline as a key osmoregulating solute in plants play an overriding role in osmotic pressure adjustment of the cell under water stress condition. Thus transgenic plants containing P5CS gene might be resistant against drought stress.

Keywords


[1]. Abaaszade, P., Sharifi, A., Lebaschi, H., & Moghadasi, F. (2007). Effect of drought stress on prolin, soluble sugars, Chlorophyll and RWC level in Melissa oggicinalis. Iranian Journal of Medicinal and Aromatic Plants Researc, 4, 504–513, (in farsi).
[2]. Aghaei, K., Ehsanpour, A. A., & Komatsu, S. (2008). Proteome Analysis of Potato under Salt Stress. Journal of Proteome Research, 7, 4858–4868, (in Parsi).
[3]. Allagulova, C. R., Gilamov, F. R., Shakirova, F. M., & Vakhitov, V. A. (2003). The plant dehydrins: structure and functions. Biochemistry, 68, 945-951.
[4]. Arnon, D.I. (1949). Copper enzymes in isolated thloroplasts.Polyphenoloxidase in Beta vulgans. Plant Physiology, 24, 1-15.
[5]. Astorga, G. I., & Melendez, L.A. (2010). Salinity effects on protein content, lipid peroxidation, pigments and proline in Paulownia imperialis and Paulowina fortune grown in vitro. Electronic Journal of Biotechnology, 5, 115.
[6]. Beinsan, C., Camen, D., Sumalan, R., & Babau, M. (2003). Study concerning salt stress effect on leaf area dynamics and chlorophyll content in four bean local landraces from Banat areas. Faculty of Horticulture, 119, 416-419.
[7]. Bensen, R. J., Boyer, J.S., & Mullet, J.E. (1988). Water deficit-induced changes in abscisic acid, growth, polyamines, translatable RNA in soybean hypocotyls. Plant Physiology, 88, 289-294.
[8]. Biamonti, G., & Caceres, J. F. (2009). Cellular stress and RNA splicing. Trends in Biochemical Sciences, 34, 146-153.
[9]. Bjorkman, O., & Powles, S.B. (1998). Inhibition of photosynthetic reactions under water stress: interaction with light level. Planta, 161, 490-504.
[10]. Bradford, M.M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248-254.
[11]. Bray, E.A. (1997). Plant responses to water deficit. Trends in Plant Sciences, 2, 48-54.
[12]. Bray, E.A. (2002). Classification of genes differentially expressed during water-deficit stress in Arabidopsis thaliana: an analysis using microarray and differential expression data. Annuals of Botan, 89, 803-811.
[13]. Chaves, M.M., Flexas, J., & Pinheiro, C. (2009). Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Annals of Botany, 103, 551–560.
[14]. Chen, C., & Dickman, M.B. (2005). Proline suppresses apoptosis in the fungalpathogen colletotrichum trifolii. Proceeding of the National Academy of Science USA, 102, 3459-3464.
[15]. Cherian, S., Reddy, M.P., & Ferreira, R.B. (2006). Transgenic plants with improved dehydration stress tolerance: Progress and future Prospects. Biologia Plantarum, 50, 481-495.
[16]. Creelman, R.A., Mason, H.G., Bensen, R.J., Boyer, J.S., & Mullet, J.E. (1990). Water deficit and abscisic acid causes inhibition of shoots versus root growth in soybean seedlings: Analysis of growth, sugar accumulation and gene expression. Plant Physiology, 92، 205-214.
[17]. Cruz de Carvalho, M.H., Arcy-Lameta, A., Roy-Macauley, H., & Gareil, M. (2001). Aspartic proteinase in leaves of common bean (Phaseolus vulgaris L.) and cowpea (Vigna unguiculata L.): enzymatic activity، gene expression and relation to drought susceptibility. FEBS Letters, 492, 242-246.
[18]. Egert, M., & Tevini, M. (2002). Influence of drought on some physiological parameters symptomatic for oxidative stress in leaves of chives (Allium schoenoprasum). Environmental and Expperimental Botany, 48, 43-49.
[19]. Fales, F.W. (1951). The assimilation and degradation of carbohydrates by yeast cells. Journal of Biological Chemistry, 193, 113-124
[20]. Farooq, M., Wahid, A., Kobayashi, N., & Fujita, D. (2009). Plant drought stress: effects، mechanisms and management. Agronomy for Sustainable Development, 29, 185-212.
[21]. Fu, J., & Huang, B. (2001). Involvement of antioxidants and lipid peroxidation in the adaptation of two cool-season grasses to localized drought stress. Environmental Experimental Botany, 45, 105-114.
[22]. Grudkowska, M., & Zagdañska, B. (2004). Multifunctional role of plant cysteine proteinases. Acta Biochimica Polonica, 51, 609-624.
[23]. Gupta, S. C., Sharma, A., Mishra, M., Mishra, R., & Chowdhuri, D. K. (2010). Heat shock proteins in toxicology: how close and how far? Life Sciences, 86, 377-384.
[24]. Hajheidari, M., Abdollahian-Noghabi, M., Askari, H., Heidari, M., Sadeghian, S. Y., Ober, E. S., & Salekdeh, G. H. (2005). Proteome analysis of sugar beet leaves under drought stress. Proteomics, 5, 950-960, (in farsi).
[25]. Hanson, A. D., & Hitz, W. D. (1982). Metabolic responses of mesophytes to plant water deficit. Annual Review of Plant Physiology, 33, 163-203.
[26]. Hendry, G. (1993). Evolutionary origins and natural functions of fructanc. New Phytologist, 123, 3-14.
[27]. Herbinger, K., Tausz, M., Wonisch, A., Soja, G., Sorger, A., & Grill, D. (2002). Complex interactive effects of drought and ozone stress on the antioxidant defence systems of two wheat cultivars. Plant Physiology and Biochemistry, 40, 691-696.
[28]. Ingram, J., & Bartels, D. (1996). The molecular basis of dehydration tolerance in plants. Annual Review of Plant Physiology and Plant Molecular Biology, 47, 377-403.
[29]. Jinyo, D., Xiaoyang, C., Wei, L., &  Qiong, G. (2004). Osmoregulation mechanism of drought stress and genetic engineering stretegies for improving drought resistance in plants. Forestry Studies in China, 6, 56-62.
[30]. Kage, H., Kochler, M., & Stutzel, H. (2004). Root growth and dry matter partitioning of Cauliflower under drought stress conditions: measurement and simulation, European Journal of Agronom, 20, 379-394.
[31]. Kerepesi, I., & Galibra, G. (2000). Osmotic and salt stress-induced alteration in soluble carbohydrate content in wheat seedlings. Crop Science, 44, 482-487.
[32]. Kiyosue, T., Yoshiba, Y., Yamagushi-Shinozalad, K., & Shinozaki, K. (1996). A nuclear gene encoding mitochondrial proline dehydrogenase، an enzyme involved in proline metabolism, is upregulated by proline but downregulated by dehydration in Arabidopsis. Plant Cell, 8, 323-1335.
[33]. Kpyoarissis, A., Petropoulou, Y., & Manetas, Y. (1995). Summer survival of leaves in a soft-leaved shrub (Phlomis fruticosa L.) under Mediterranean field conditions: avoidance of photoinhibitory damage through decreased chlorophyll contents. Journal of Experimental Botany, 46, 1825-1831.
[34]. Kraus, T.E., Mckersie, B.D., & Fletcher, R.A. (1995). Paclobutrazole induced tolerance of wheat leaves to paraquat may involve antioxidant enzyme activity. Journal of Plant Physiology, 145, 570-576.
[35]. Leport, L., Turner, N.C., French, R.J., Barr, M.D., Duda, R., Davies, S.L., Tennant, D., & Siddique, K.H.M. (1999). Physiological responses of chickpea genotypes to terminal drought in a Mediterranean type environment. European Journal of Agronomy, 11, 279-291.
[36]. Lindquist, S., & Crig, E.A. (1998). The heat-shock proteins. Annual Review ofGenetics, 22, 631-677.
[37]. Matysik, J., Alia, B.B., & Mohanty, P. (2002). Molecular mechanisms of quenching of reactive oxygen species by proline under stress in plants. Current Science, 82, 525-532.
[38]. Mishra, S., & Dubey, R.S. (2006). Inhibition of ribonuclease and protease activities in arsenic exposed rice seedlings: role of proline as enzyme protectant. Journal of Plant Physiology, 163, 927-936.
[39]. Mohammadkhani, N., & Heidari, R. (2008). Effect of drought stress on soluble proteins in two maize varieties. Turkish Journal of Biology, 32, 23-30, (in farsi).
[40]. Mohsenzade, S., Malboobi, M. A., Razavi, K., & Farrahi Aschtiani, S. (2006). Physiological and molecular responses of Aeluropus lagopoides (poaceas) to water deficit. Environmental and Experimental Botany, 56, 374-322, (in farsi).
[41]. Morgan, J. M. (1992). Osmotic components and properties associated with genotypic differences in osmoregulation in wheat. Australian Journal of Plant Physiology, 19, 67-76.
[42]. Murashige, T., & Skoog, F. (1962). A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiologia Plantarum, 15, 473-497.
[43]. Pagter, M., Bragato, C., & Brix, H. (2005). Tolerance and physiological responses of phragmites australis to water deficit. Aquatic Botany, 81, 285-299.
[44]. Paul, M., & Hasegava, A. (1996). Plant cellular and molecular responses to high salinity. Plant Physiology and Plant Molecular Biology, 51, 463- 499.
[45]. Penna, S. (2003). Building stress tolerance drought over-producing trehalose in transgenic plants. Trends in Plant Science, 8, 355-357.
[46]. Pinheiro, C., Chaves, M. M., & Ricardo, C. P. (2001). Alterations in carbon and nitrogen metabolisminduced by water deficit in the stems and leaves of Lupinus albus L. Journal of Experimental Botany, 52, 1063-1070.
[47]. Rahdari, P., & Hoseini, S.A. (2012). Drought Stress: A Review. International journal of Agronomy and Plant Production, 3, 443-446.
[48]. Ranganayakulu, G.S., Veeranagamallaiah, G., & Sudhakar, C. (2013). Effect of salt stress on osmolyte accumulation in two groundnut cultivars (Arachis hypogaea L.) with contrasting salt tolerance. African Journal of Plant Science, 7, 586-592.
[49]. Rayaptai, P.J., & Stewart, C.R. (1991). Solubilization of proline dehydrogenase from maize (Zea mays L.) mitochondria. Plant Physiology, 95, 787-791.
[50]. Razavizade, R., Ehsanpour, A.A., Ahsan, A., & Komatsu, S. (2009). Proteome analysis of tobacco leaves under salt stress. Peptides, 30, 1651-1659, (in farsi).
[51]. Razavizadeh, R., (2009) Effect of P5CS expression on some physiological and proteomics of transgenic tobacco (Nicotiana tabacum L. cv. Wisconsin) under in vitro salt stress. PhD Thesis, University of Isfahann
[52]. Reddy, A.R., Chaitanya, K.V., & Vivekanandan, M. (2004). Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants. Journal of Plant Physiology, 161, 1189-1202.
[53]. Sairam, R.K. (1994). Effect of moisture stress on physiological activities of two contrasting wheat genotypes. Indian Journal of Experimental Biology, 32, 594-597.
[54]. Sairam, R. K., Deshmukh, P.S., & Saxna, D.C. (1998). Role of antioxidant systems in Wheat genotype tolerance to water stress. Biologia Plantrum, 41, 387-394.
[55]. Santos, C. (2004). Regulation of chlorophyll biosynthesis and degradation by salt stress in sunflower leaves. Scientia Horticulturae, 103, 93-99.
[56]. Sato, Y., Kawabuchi, S., Irimoto, Y., & Miyawaki, O. (2004). Effect of water activity and solvent-ordering on intermolecular interaction of high-methoxyl pectins in various sugar solutions. Food Hydrocolloids, 18, 527-534.
[57]. Siddiqi, E.H., Ashraf, M., Hussain, M., & Jamil, A. (2009). Assessment of intercultivar variation for salt tolerance in safflower (Carthamustinctorius L.) using gas exchange characteristics as selection criteria. Pakistan Journal of Botany, 41, 2251-2259.
[58]. Siripornadulsil, S., Traina, S., Verma, P.D.S., & Sayre, R.T. (2002). Molecular mechanism of proline mediated tolerance to toxic heavy metals in transgenic microalgae. Plant Cell, 14, 2837-2847.
[59]. Tahir, M.H.N., & Mehdi, S.S. (2001). Evaluation of open pollinated sunflower (Helianthus annuus L.) populations under water stress and normal conditions. International Journal of Agriculture and Biology, 3, 236-238.
[60]. Tayebi, A., Afshari, H., Farahvash, F., Sinki, M.J., & Nezarat, S. (2012). Effect of drought stress and different planting dates on safflower yield and its components in Tabriz region'. Iranian Journal of Plant Physiology, 2, 445–453, (in farsi).
[61]. Williams، J.H.H.، William، S.A.L.، Pollock، C.J., & Farrar، G.F. (1992). Regulation of leaf metabolism by sucrose. Plant Physiology, 39، 443-446.
[62]. Yamada, M., Morishita, H., Urano, K., Shiozaki, N., Yamagushi-Shinozaki, K., Shinozaki, K., & Yoshiba, Y. (2005). Effects of free proline accumulation in petunias under drought stress. Journal of Experimental Botany, 56, 1975-1981.
[63]. Yamchi, A., Rastgar Jazzii, F., Ghobadi, C., Mousavi, A., & Karkhanehee, A.A. (2005). Increasing of tolerance to osmotic stresses in tobacco Nicotiana tabacum cv. Xanti through overexpression of p5cs gene. Journal of Scince and Tecnologyof Agriculture and Natural Resources, 8, 40-49, (in Farsi).