[1]. Abtahi, A.S. (1380).Two varieties of pistachio seedlings response to the amount and type of soil in the greenhouse. Journal of Science and Technology of Agriculture and Natural Resources, 5 (1), 93-100 (in Persian).
[2]. Alexander, D.B., and Zuberer, D.A. 1991. Use and Production by rhizosphere bacteria, Biology chrome azurol S reagents to evaluate siderophore.Fertility of Soil, 12, 39-45
[3]. Al-Sobhi, O.A., Al-Zahrani, H.S., & Al-Ahmadi, S.B. (2006). Effect of Salinity on Chlorophyl and Carbohydrate Contents of Calotropis procera Seedlings. Scientific Journal of King Faisal University, 7(1),105-115.
[4]. AOSA, (1970). Tetrazolium Testing Handbook to the Handbook on Seed Testing, Prepared by the Tetrazolium Subcommittee of the Association of Official Seed Analysts.
[6]. Bahmani, M., Jalali, Gh., Asgharzadeh, A., & Tabari, M. (2014). Effect of Plant Growth Promotion Rhizobacterial on some characteristic of germination and seed vigority. Journal of Soil Biology, 2(1), 80 - 86. (In Persian)
[7]. Bashan, Y., Holguin, G., & de-Bashan, L.E. (2004). Azospirillum – plant relationships: physiolog-ical, molecular, agricultural, and environmental advances. Canadian Journal of Microbiology, 50,52–77.
[8]. Berglund, A.H., Larsson, K.E., & Liljenberg, C.S. (2004) Permeability behavior of lipid vesiclesprepared from plant plasma membranes – impact of compositional changes. Biochimistry Biophysic Acta Molecular Cell Biolology, 1682, 11–7.
[9].
Bharti, N.,
Barnawal, D.,
Awasthi, A.,
Yadav, A., &
Kalra, A. (2014). Plant growth promoting rhizobacteria alleviate salinity induced negative effects on growth, oil content and physiological status in
Mentha arvensis. Acta Physiologiae Plantarum, 36(
1), 45-60
[10]. Bohn, W. (1979). Methods of studying root systems, Ecological Studies, Springer Verlag., Berlin, 188 pp.
[11]. Chanway, C.P., Shishido, M., Nairn, J., Jungwirth, S., Markham, J., Xiao, G., & Holl, F.B. (2000). Entophytic colonization and field responses of hybrid spruce seedling after inoculation with plant growth- promoting rhizobacteria. Forest Ecology and Management, 133, 81-88.
[12]. Del Amor, F.M., & Cuadra - Crespo, P. (2011). Plant growth-promoting bacteria as a tool to improve salinity tolerance in sweet pepper. Functional Plant Biology, 39(1), 82-90
[13]. Emami, A. (1375). Methods of plant analysis (Volume I). Organization of research, education and agricultural extension, Soil and Water Research Institute, Publication No. 982. 128 pages.
[14]. Eugenia, M., Nunes, S., & Smith, G., (2003). Electrolyte leakage assay capable of quantifying freezing resistance in rose clover. Crop Science, 43: 1349-1357.
[15]. Ferreira-Silva, S.L., Silveira, J., Voigt, E., Soares, L., & Viegas, R. (2008). Changes in physiological indicators associated with salt tolerance in two contrasting cashew rootstocks. Braz. Journal of Plant Physiology, 20, 51-59.
[16]. Flexas, J., Ortun, O., M.F, Ribas-Carbo, M., Di az-Espejo, A., Florez-Sarasa, I.D., & Medrano, H. (2007). Mesophyll conductance to CO Arabidopsis thaliana. New Phytology, 175, 501–511
[17]. Garcia-Sanchez, F., & Syvertsen, J.P. (2006). Salinity tolerance of Cleopatra mandarin and Carrizo citrange citrus rootstock seedlings is affected by Co2 enrichment during growth. Journal of the American Society for Horticultural Science, 131, 24- 31.
[18]. Glick, B., Jacobson, R., Schwarz, C.B., & Pasternak, J.J. (1994). 1aminocycloprpane-1-carboxylic acid deaminase mutants of the plant growth promoting rhizobacterium Pseudomonas putida GR12-2 do not stimulate canola root elongation. Canadian Journal of Microbiology, 40, 911-915.
[19]. Greenway, H., & Munns, R. (1980). Mechanisms of salt tolerance in nonhalophytes, Annual Reviews of Plant Physiology, 31, 149-190.
[20]. Hafeez, F.Y., Safdar, M.E., Chaudhry, A.U., & Malik, K.A. (2004). Rhizobial inoculation improves seedling emergence, nutrient uptake and growth of cotton. Australian Journal of Experimental Agriculture, 44, 617-622
[21]. Hester, M.W., Mendelesoln, I.A., & Mckee, K.L. (2001). Species and Population variation to salinity stress in Panicum hemitomon, Spartina patens, and Spartina alterniflora: morphological and physiological constrains. Environmental and Experimental Botany, 46, 277-297.
[22]. Ibrahim, A.H. (2013). Tolerance and avoidance responses to salinity and water stresses in Calotropis Procera and Suaeda aegyptiaca. Turk Journal of Agricultural and Forestry, 37, 352-360.
[23].
Karlidag, H.,
Esitken, A.,
Yildirim, E.,
Figen Donmez, M., &
Turan, M. (2011). Effects of Plant Growth Promoting Bacteria on Yield, Growth, Leaf Water Content, Membrane Permeability, and Ionic Composition of Strawberry under Saline Conditions.
Journal of Plant Nutrition, 34 (
1) 34-45.
[24]. Khavazi, K.R.E., & malakouti, J. (2005). Necessity of Industrial production of bio-fertilizer in Iran. Research Institute of Soil and Water, 439 pages
[26]. Marcelo, S.M., & Bruce, S. (2010). Photosynthetic and growth responses of
Eugenia uniflora L. seedlings to soil flooding and light intensity.
Environmental and Experimental, 68(2), 113–121
[27]. Mayak, S., Tirosh, T., & Glick, B.R. (2004). Plant growth-promoting bacteria confer resistance in tomato plants to salt stress. Plant Physiology Biochemistry, 42: 565-572.
[28]. Momeni, A. (2009). Geographic distribution of soil salinity levels of Iran. Journal of Soil Science (soil and water), 24 (3), 215-204 (in Persian)
[29]. Naumann, J.C., Young, D.R., & Anderson, J.E. (2007). Linking leaf chlorophyll fluorescence Properties to physiological responses for detection of salt and drought stress in coastal plant Species. Physiology Plant, 131,422–433
[30]. Ortiz, N., Armadaa, E., Duque, E., Roldán, A., & Azcón. R. (2015). Contribution of arbuscular mycorrhizal fungi and/or bacteria to enhancing plant drought tolerance under natural soil conditions: Effectiveness of autochthonous or allochthonous strains. Journal of Plant Physiology, 174, 87–96.
[31]. Patten, C.L., & Glick B.R. (2002). Role of Pseudomonas putida indole acetic acid in development of host plant root system. Apply Environment Microbiology, 3795-3801.
[32]. Sabeti, H. (2002). Forests, Trees and Shrubs of Iran. Yazd University Press, 3nd edition. (In Farsi).
[33]. Saxton, K.E., Rawls, W.J., Romberger, J.S. & papendick, R.I. (1986). estimating generalized soil water characteristics from texture. Soil Scientific of Social American Journal, 50,1031-1036.
[34]. Taiz, L,. & Zeiger, E. (2002). Plant Physiology, Third Edition. Sinauer Associates, Sunderland, MA. 690 pps.
[35]. Todar, K. (2004). Pseudomonas and its relatives. http://www.tex book of bacteriology. Net/pseudomonas. Etc. html.
[36]. Wang,
J.,
Xing, D.,
Zhang, L., &
Jia, L. (2007). A new principle photosynthesis capacity biosensor based on quantitative measurement of delayed
fluorescence in vivo
. Biosensors and Bioelectronics, 22, 12, 2861–2868.
[37]. Yao, L., Zhan sheng, W., & Zheng, Y. (2010). Growth promotion and protection against salt stress by Pseudomonas putida Rs-198 on cotton. European Journal of Soil Biology, 46, 49-54.