[1]. Abad, B., Salahi, B., Raispour, K., & Moradi, M. (2021). Satellite Based Communication between Land Surface Temperature and Biophysical Variables in the Jazmourian Catchment. Iranian Journal of Geophysics, 15(2), 119-135. doi: 10.30499/ijg.2021.272063.1315 [in Farsi]
[2]. Akbari, T., & Lotfi Qaranchai, S. (2018). Investigating the effect of fluctuating climatic elements (temperature and precipitation) on vegetation changes (case study: Jolfa city). First International Congress and Fourth National Congress of Irrigation and Drainage of Iran, Urmia. [in Farsi]
[3]. Alemayehu, Z., & Kabite Wedajo, G. (2023). Spatiotemporal climate and vegetation trends, and their relationship: A case of Genale Dawa basin, Ethiopia. Remote Sensing Applications Society and Environment, 32, 101070. doi: 10.1016/j.rsase.2023.101070
[4]. Alshehri, F., Abuamarah, B.A., & Abd El-Hamid, H.T. (2023). Impact of land use dynamics on land surface temperature using optical remote sensing data integrated with statistical analysis in Riyadh, Saudi Arabia. Advances in Space Research, 72(5), 1739-1750. doi: 10.1016/j.asr.2023.04.051
[5]. Amirahmadi, A., & Abasnia, M. (2010). Regionalization of climate at Esfahan province by using new statistical techniques. Journal of Arid Regions Geographic Studies, 1(1), 53-68. [in Farsi]
[6]. Amiri, M., Tarkesh, M., Jafari, R., & Jetschke, G. (2020). Bioclimatic variables from precipitation and temperature records vs. remote sensing-based bioclimatic variables: which side can perform better in species distribution modeling? Ecological Informatics, 57, 101060. doi: 10.1016/j.ecoinf.2020.101060
[7]. Anees, S.A., Zhang, X., Khan, K.A., Abbas, M., Ghramh, H.A., & Ahmad, Z. (2022). Estimation of fractional vegetation cover dynamics and its drivers based on multi-sensor data in Dera Ismail Khan, Pakistan. Journal of King Saud University-Science, 34(6), 102217. doi: 10.1016/j.jksus.2022.102217
[8]. Ansari, M.R., & Norouzi, A. (2023). Spatial autocorrelation of Land Surface Temperature and its relationship with land use in Ahvaz city. Geography and Environmental Planning, 34(3), 141-165. doi: 10.22108/gep.2023.136187.1564 [in Farsi]
[9]. Asefjah, B., Esmaeilpour, Y., Bazrafshan, O., Keshtkar, A.R., & Zamani, H. (2022). Land degradation trend in the climatic types of Fars province using remote sensing and climatic variables. Iranian journal of Ecohydrology, 9(4), 833-851. [in Fari]
[10]. Banerjee, A., Kang, S., Meadows, M.E., Xia, Z., Sengupta, D., & Kumar, V. (2023). Quantifying climate variability and regional anthropogenic influence on vegetation dynamics in northwest India. Environmental Research, 234, 116541. doi: 10.1016/j.envres.2023.116541
[11]. Dehaghani, A.M., Gohari, A.R., Zareian, M.J., & Torabi Haghighi, A. (2023). A comprehensive evaluation of the satellite precipitation products across Iran. Journal of Hydrology Regional Studies, 46, 101360. doi: 10.1016/j.ejrh.2023.101360
[12]. Ebrahimi, A., Motamed Vaziri, B., Nazemosadat, S.M.J., & Ahmadi, H. (2020). Assessing the relationship between land surface temperature with vegetation and water area change in Arsanjan County, Iran. Journal of Rs and Gis for natural Resources, 11(4), 65-86. [in Farsi]
[13]. Eini, M.R., Rahmati Ziveh, A., Salmani, H., Mujahid, S., Ghezelayagh, P., & Piniewski, M. (2023). Detecting drought events over a region in Central Europe using a regional and two satellite-based precipitation datasets. Agricultural and Forest Meteorology, 342, 109733. doi: 10.1016/j.agrformet.2023.109733
[14]. Firouzi, F., Tavosi, T., & Mahmoudi, P. (2018). Investigating the statistical relationship between climatic and hydrological variables with Vegetation Dynamics in a dry climate (Case study: Sistan plain in eastern Iran). Desert Management, 6(11), 99-111. doi: 10.22034/jdmal.2018.32326 [in Farsi]
[15]. Ghebrezgabher, M.G., Yang, T., Yang, X., & Eyassu Sereke, T. (2020). Assessment of NDVI variations in responses to climate change in the Horn of Africa. The Egyptian Journal of Remote Sensing and Space Sciences, 23(3), 249-261. doi: 10.1016/j.ejrs.2020.08.003
[16]. Govil, H., Guha, S., Diwan, P., Gill, N., & Dey, A. (2020). Analyzine linear relationships of LST with NDVI and MNDISI using various resolution levels of Landsat 8 OLI and TIRS data. In: Data Management. Analytics and Innovation, 171-184. dx.doi: 10.1007/978-981-32-9949-8_13
[17]. He, Y., Wang, l., Niu, Z., & Nath, B. (2022). Vegetation recovery and recent degradation in different karst landforms of southwest China over the past two decades using GEE satellite archives. Ecological Informatics, 68, 101555. doi: 10.1016/j.ecoinf.2022.101555
[18]. He, P., Xu, L., Liu, Z. Jing, Y., & Zhu, W. (2021). Dynamics of NDVI and its influencing factors in the Chinese Loess Plateau during 2002–2018. Regional Sustainability, 2(1), 36-46. doi: 10.1016/j.regsus.2021.01.002
[19]. Lin, M., Hou, L., Qi, Z., & Wan, L. (2022). Impacts of climate change and human activities on vegetation NDVI in China’s Mu Us Sandy Land during 2000–2019. Ecological Indicators, 142, 109164. doi: 10.1016/j.ecolind.2022.109164
[20]. Lin, Z., Wen, Z., Liu, Y., Lin, Z., Han, P., Shi, H., .Wang, Z., & Su, T. (2023). Vegetation response to changes in climate across different climate zones in China. Ecological Indicators, 155, 110932. doi: 10.1016/j.ecolind.2023.110932
[21]. Liu, Z., Chen, Y., & Chen, C. (2023). Analysis of the Spatiotemporal Characteristics and Influencing Factors of the NDVI Based on the GEE Cloud Platform and Landsat Images. Remote Sens, 15(20), 4980. doi: 10.3390/rs15204980
[22]. Liu, H., Jiao, F., Yin, J., Li, T., Gong, H., Wang, Z., & Lin, Z. (2020). Nonlinear relationship of vegetation greening with nature and human factors and its forecast – A case study of Southwest China. Ecological Indicators, 111, 106009. doi: 10.1016/j.ecolind.2019.106009
[23]. Liu, J., Wei, L., Zheng, Z., & Du, J. (2023). Vegetation cover change and its response to climate extremes in the Yellow River Basin. Science of The Total Environment, 905, 167366. doi: 10.1016/j.scitotenv.2023.167366
[24]. Lou, P., Wu, T., Yang, S., Wu, X., Chen, J., Zhu, X., Chen, J., Lin, X., Li, R., Shang, C., Wang, D., La, Y., Wen, A., & Ma, X. (2023). Deep learning reveals rapid vegetation greening in changing climate from 1988 to 2018 on the Qinghai-Tibet Plateau. Ecological Indicators, 148, 110020. doi: 10.1016/j.ecolind.2023.110020
[25]. Meshesha, K.S., Adem, E.S., Kassaye, A.Y., Tsehayu, M.A., Eshetu, A.A., & Agegnehu, H.W. (2024). Evaluating the relationship of vegetation dynamics with Rainfall and Land Surface Temperature using geospatial techniques in South Wollo zone, Ethiopia. Environmental Challenges, 15, 100895. doi: 10.1016/j.envc.2024.100895
[26]. Mohammadi, A., Khodabandehlou, B., & Babaie, P. (2021). Evaluation of landuses temperature changes in Zanjan in the period 2013 to 2019 using comparison of land surface temperature estimation algorithms. Geographical Planning of Space, 11(41), 127-144. doi: 10.30488/gps.2021.250592.3313 [in Farsi]
[27]. Nega, W., Hailu, B.T., & Fetene, A. (2019). An assessment of the vegetation cover change impact on rainfall and land surface temperature using remote sensing in a subtropical climate, Ethiopia. Remote Sensing Applications: Society and Environment, 16, 100266. doi: 10.1016/j.rsase.2019.100266
[28]. Nguyen, P., Shearer, E.J., Tran, H., Ombadi, M., Hayatbini, N., Palacios, T., Huynh, P., Updegraff, G., Hsu, K., Kuligowski, B., Logan, W.S., & Sorooshian, S. (2019). The CHRS data portal, an easily accessible public repository for PERSIANN global satellite precipitation data. Scientific Data 6, 180296. doi: 10.1038/sdata.2018.296
[29]. Oad, V.K., Szymkiewicz, A., Khan, N.A., Ashraf, S., Nawaz, R., Elnashar, A., Saad, S., & Qureshi, A.H. (2023). Time series analysis and impact assessment of the temperature changes on the vegetation and the water availability: A case study of Bakun-Murum Catchment Region in Malaysia. Remote Sensing Applications Society and Environment, 29, 100915. doi: 10.1016/j.rsase.2022.100915
[30]. Organization for Educational Research and Planning. (2020). Isfahan province. Iran Textbook Publishing Company. [in Farsi]
[31]. Pradeep Kumar, B., Anusha, B.N., Raghu Babu, K., & Padma Sree, P. (2023). Identification of climate change impact and thermal comfort zones in semi-arid regions of AP, India using LST and NDBI techniques. Journal of Cleaner Production, 407, 137175. doi: 10.1016/j.jclepro.2023.137175
[32]. Kamyabi, S., & Abdi, K. (2020). Detection and analysis of the trend of climate change (precipitation and temperature) within the boundaries of Sari. Journal of Environmental Science and Technology, 22(7), 165-179. [in Farsi]
[33]. Kumar, B.P., Babu, K.R., Anusha, B.N., & Rajasekhar, M. (2022). Geo-environmental monitoring and assessment of land degradation and desertification in the semi-arid regions using Landsat 8 OLI / TIRS, LST, and NDVI approach. Environmental Challenges, 8, 100578. doi: 10.1016/j.envc.2022.100578
[34]. Ren, Y., Zhang, F., Zhao, C., & Cheng, Z. (2023). Attribution of climate change and human activities to vegetation NDVI in Jilin Province, China during 1998–2020. Ecological Indicators, 153, 110415. doi: 10.1016/j.ecolind.2023.110415
[35]. Roy, B., & Bari, E. (2022). Examining the relationship between land surface temperature and landscape features using spectral indices with Google Earth Engine. Heliyon, 8(9), e10668. doi: 10.1016/j.heliyon.2022.e10668
[36]. Saha, J., Ria, S.S., Sultana, J., Urmi, M.A., Hasan Seyam, M.M., & Rahman, M.M. (2024). Assessing seasonal dynamics of land surface temperature (LST) and land use land cover (LULC) in Bhairab, Kishoreganj, Bangladesh: A geospatial analysis from 2008 to 2023. Case Studies in Chemical and Environmental Engineering, 9, 100560. doi: 10.1016/j.cscee.2023.100560
[37]. Samset, B.H., Zhou, C., Fuglestvedt, J.S., Lund, M.T., Marotzke, J., & Zelinka, M.D. (2023). Steady global surface warming from 1973 to 2022 but increased warming rate after 1990. Communications Earth and Environment, 4(1), 1-6. doi: 10.1038/s43247-023-01061-4
[38]. Soheili, E., Malekinezhad, H., & Ekhtesasi, M.R. (2019). Analysis of Trends in Temperature and Precipitation in Doroodzan Dam Basin using the Modified Mann-Kendall Test. Journal of Watershed Management Research, 9(18), 123-134. [in Farsi]
[39]. Soltani, N., & Mohammadnejad, V. (2021). Effectiveness of Google Earth Engine (GEE) system in evaluating land use changes and predicting it with Markov model (Case study of Urmia plain). Journal of Remote Sensing and Geographical Information System in Natural Resources, 12(3), 101-114. [in Farsi]
[40]. Soltani Mohammadi, A., Mollaeinia, M.R., & Ajamzadeh, A. (2019). Assessment of Climate Change Effect on Temperature and Precipitation Based on Fourth and Fifth IPCC reports (Case study: Isfahan Province). Irrigation Sciences and Engineering, 42(2), 1-16. doi: 10.22055/jise.2017.19075.1373 [in Farsi]
[41]. Ullah, W., Ahmad, K., Ullah, S., Tahir, A.A., Javed, M.F., Nazir, A., Abbasi, A.M., Aziz, M., & Mohamed, A. (2023). Analysis of the relationship among land surface temperature (LST), land use land cover (LULC), and normalized difference vegetation index (NDVI) with topographic elements in the lower Himalayan region. Heliyon, 9(2), e13322. doi: 10.1016/j.heliyon.2023.e13322
[42]. Wan Mohd Jaafar, W.s., Abdul Maulud, K.N., Muhmad Kamarulzaman, A.M., Raihan, A., Md Sah, S., Ahmad, a., Saad S.N.M., Mohd Azmi, A.T., jusoh Syukri, N.K.A., & Razzaq Khan, W. (2020). The Influence of Deforestation on land surface Temperature-a case study of PeraK and Kedah, Malaysia. Forests, 11(6), 670. doi: 10.3390/f11060670
[43]. Wang, X., Gong, Z., Zhao, D., & Liu, J. (2024). Spatiotemporal changes of forest vegetation after the implementation of a natural forest protection project and underlying driving factors: Case study of a typical natural secondary forest area in the Loess Plateau. Ecological Engineering, 199, 107164. doi: 10.1016/j.ecoleng.2023.107164
[44]. Wang, S., Ma, Q., Ding, H., & Liang, H. (2018). Detection of urban expansion and land surface temperature change using multi-temporal landsat images. Resources, Conservation and Recycling, 128, 526-534. doi: 10.1016/j.resconrec.2016.05.011
[45]. Wang, Z., Wang, Y., Liu, Y., Wang, F., Deng, W., & Rao, P. (2023). Spatiotemporal characteristics and natural forces of grassland NDVI changes in Qilian Mountains from a sub-basin perspective. Ecological Indicators, 157, 111186. doi: 10.1016/j.ecolind.2023.111186
[46]. Xie, Y., Chen, Y., Zhang, Y., Li, M., Xie, M., & Mo, W. (2023). Response of vegetation normalized different vegetation index to different meteorological disaster indexes in karst region of Guangxi, China. Heliyon, 9(10), e20518. doi: 10.1016/j.heliyon.2023.e20518
[47]. Yaghmaei, L., Soltani, S., & Khodagholi, M. (2009). Bioclimatic classification of Isfahan province using multivariate statistical methods. International Journal of Climatology, 29(12), 1850-1861. doi: 10.1002/joc.1835
[48]. Zarfeshani, A., & Jahangir, M.H. (2021). The Isfahan values of Temperature and Precipitation Forecast Based on Two Fine scale models Lars_WG and SDSM and Artificial Neural Network Method. Iranian Journal of Irrigation and Drainage, 15(1), 38-49. [in Farsi]
[49]. Zhao, X., Tan, S., Li, Y., Wu, H., & Wu, R. (2024). Quantitative analysis of fractional vegetation cover in southern Sichuan urban agglomeration using optimal parameter geographic detector model, China. Ecological Indicators158, 111529. doi: 10.1016/j.ecolind.2023.111529
[50]. Zhou, Y., Batelaan, O., Guan, H., Liu, T., Duan, L., Wang, Y., & Li, X. (2024). Assessing long-term trends in vegetation cover change in the Xilin River Basin: Potential for monitoring grassland degradation and restoration. Journal of Environmental Management, 349, 119579. doi: 10.1016/j.jenvman.2023.119579
[51]. Zolfaghary, M., Rayegani, B., Nezami Balouchi, B., Gostasb, H., & Jahani, A. (2022). Investigating the trend of vegetation change in the Central Plateau of Iran with the help of remotely sensed time series between 2002-2018. Journal of Natural Environment, 75(4), 613-627. doi: 10.22059/jne.2022.340325.2409 [in Farsi]