[1]. Ahrens, C. W., Andrew, M. E., Mazanec, R. A., Ruthrof, K. X., Challis, A., Hardy, G., & Rymer, P. D. (2020). Plant functional traits differ in adaptability and are predicted to be differentially affected by climate change. Ecology and evolution, 10(1), 232-248. https://doi.org/10.1002/ece3.5890
[3]. Alinejad, F., Mehrabian, A. R., Ahmadikhah, A., Akbari Azirani, T., & Minai-Tehrani, D. (2022). Predicting effects of climate change on the distribution of nectar and pollen plants species Teucrium polium L. and Thymus kotschyanus Boiss. & Hohen. Journal of Arid Biome, 11(2), 75-86. 20.1001.1.2008790.1400.11.2.6.6
[4]. Aquilué, N., Messier, C., Martins, K. T., Dumais-Lalonde, V., & Mina, M. (2021). A simple-to-use management approach to boost adaptive capacity of forests to global uncertainty. Forest Ecology and Management, 481, 118692. https://doi.org/10.1016/j.foreco.2020.118692
[5]. Bahraman, A. S., SepehryB, A., & BaraniC, H. (2020). Plant responses to individual and combined effects of abiotic stress: Lycium depressum L. vegetative parameters under salinity and drought. Journal of Rangeland Science, 10(3), 228.
[6]. Balkrishna, A., Sakshi, Chauhan, M., Dabas, A., & Arya, V. (2022). A Comprehensive Insight into the Phytochemical, Pharmacological Potential, and Traditional Medicinal Uses of Albizia lebbeck (L.) Benth. Evidence‐Based Complementary and Alternative Medicine, 2022(1), 5359669. https://doi.org/10.1155/2022/5359669
[7]. Behzadi, S., Ghanbarian, G. A., Khosravi, R., Safaeian, R., & Pourghasemi, H. R. (2024). Predicting the habitat suitability and niche dynamics of two Ziziphus species in response to climate change. Authorea Preprints. DOI: 10.22541/au.171073467.73857576/v1
[8]. Behzadian, M., Otaghsara, S. K., Yazdani, M., & Ignatius, J. (2012). A state-of the-art survey of TOPSIS applications. Expert Systems with applications, 39(17), 13051-13069. https://doi.org/10.1016/j.eswa.2012.05.056
[9]. Ben Romdhane, W., Al-Doss, A., & Hassairi, A. (2024). The newly assembled chloroplast genome of Aeluropus littoralis: molecular feature characterization and phylogenetic analysis with related species. Scientific Reports, 14(1), 6472. https://doi.org/10.1038/s41598-024-57141-8
[10]. Brancalion, P. H., & Holl, K. D. (2020). Guidance for successful tree planting initiatives. Journal of Applied Ecology, 57(12), 2349-2361. https://doi.org/10.1111/1365-2664.13725
[11]. Brandt, L., Lewis, A. D., Fahey, R., Scott, L., Darling, L., & Swanston, C. (2016). A framework for adapting urban forests to climate change. Environmental Science & Policy, 66, 393-402. https://doi.org/10.1016/j.envsci.2016.06.005.
[12]. Brunckhorst, D. J., & Trammell, E. J. (2023). Future options redundancy planning: Designing multiple pathways to resilience in urban and landscape systems facing complex change. Urban Science, 7(1), 11. https://doi.org/10.3390/urbansci7010011.
[13]. Bytnerowicz, T. A., & Carruthers, R. I. (2014). Temperature-dependent models of Zannichellia palustris seed germination for application in aquatic systems. Environmental and experimental botany, 104, 44-53. https://doi.org/10.1016/j.envexpbot.2014.03.006.
[14]. Can, A., Kazankaya, A., Orman, E., Gundogdu, M., Ercisli, S., Choudhary, R., & Karunakaran, R. (2021). Sustainable mulberry (Morus nigra L., Morus alba L. and Morus rubra L.) production in Eastern Turkey. Sustainability, 13(24), 13507. https://doi.org/10.3390/su132413507.
[15]. Pretzsch, H., Matyssek, R., Lüttge, U., & Cánovas, F. M. (2019). Progress in Botany Vol. 80. Springer.
[16]. Carhuancho León, F. M., Aguado Cortijo, P. L., Morató Izquierdo, M. D. C., & Castellanos Moncho, M. T. (2020). Application of the thermal time model for different Typha domingensis populations. BMC Plant Biology, 20(1), 377. doi: 10.1186/s12870-020-02573-3.
[17]. Chakraborty, S. (2022). TOPSIS and Modified TOPSIS: A comparative analysis. Decision Analytics Journal, 2, 100021. https://doi.org/10.1016/j.dajour.2021.100021.
[18]. Challis, A., Blackman, C., Ahrens, C., Medlyn, B., Rymer, P., & Tissue, D. (2022). Adaptive plasticity in plant traits increases time to hydraulic failure under drought in a foundation tree. Tree Physiology, 42(4), 708-721. https://doi.org/10.1093/treephys/tpab096.
[19]. Charafi, J., & Belghyti, D. (2024). Modeling of the spatial distribution of species of interest in agriculture for their conservation: case of Punica granatum L. IOP Conference Series: Earth and Environmental Science, 1398(1), 12017.
[20] Chen, X. (2016). An analysis of climate impact on landscape design. Atmospheric and Climate Sciences, 6(3), 475-481.
[21] Chiabai, A., Quiroga, S., Martinez-Juarez, P., Higgins, S., & Taylor, T. (2018). The nexus between climate change, ecosystem services and human health: Towards a conceptual framework. Science of the total environment, 635, 1191-1204. https://doi.org/10.1016/j.scitotenv.2018.03.323
[22] Chedraoui, S., Abi-Rizk, A., El-Beyrouthy, M., Chalak, L., Ouaini, N., & Rajjou, L. (2017). Capparis spinosa L. in a systematic review: A xerophilous species of multi values and promising potentialities for agrosystems under the threat of global warming. Frontiers in Plant science, 8, 1845. https://doi.org/10.3389/fpls.2017.01845.
[23]. Cho, J. S., Lee, J. S., & Kim, J. W. (2017). Distribution of Phragmites australis communities with different habitat salinity. Journal of Coastal Research, 33(5), 1210-1216. https://doi.org/10.2112/JCOASTRES-D-16-00065.1
[24]. Cipolla, A., Delbrassine, F., Da Lage, J.-L., & Feller, G. (2012). Temperature adaptations in psychrophilic, mesophilic and thermophilic chloride-dependent alpha-amylases. Biochimie, 94(9), 1943–1950. https://doi.org/10.1016/j.biochi.2012.05.013.
[25]. Darabi, H., Moarrab, Y., Balist, J., & Naroei, B. (2023). Resilient plant species selection for urban green infrastructure development in arid regions: a case of Qom, Iran. Urban Ecosystems, 26(6), 1753-1768. https://doi.org/10.1007/s11252-023-01410-3
[26]. Darabi, H., & Saeedi, I. (2019). The Design of Resilient Green Spaces towards Adapting with Climate Change, Case Study Behesht Boulevard, Borujerd. Journal: Journal of Environmental Science and Technology, 21, 9(88), 209-219. https://sid.ir/paper/394361/en
[27]. Datta, S. K., Jayanthi, R., & Janakiram, T. (2020). Bougainvillea. Floriculture and Ornamental Plants, 1–34.
[28]. de Souza, D. G. B., dos Santos, E. A., Soma, N. Y., & da Silva, C. E. S. (2021). MCDM-based R&D project selection: A systematic literature review. Sustainability, 13(21), 11626. https://doi.org/10.3390/su132111626
[29]. Ekstam, B., & Forseby, Å. (1999). Germination response of Phragmites australis and Typha latifolia to diurnal fluctuations in temperature.
Seed Science Research,
9(2), 157-163. DOI:
10.1017/S0960258599000173, 1999,9(02).
[30]. Espeland, E. K., & Kettenring, K. M. (2018). Strategic plant choices can alleviate climate change impacts: A review. Journal of Environmental Management, 222, 316-324. https://doi.org/10.1016/j.jenvman.2018.05.042.
[32].Fatima, S., Hameed, M., Ahmad, F., Khalil, S., Ahmad, M. S. A., Ashraf, M., & Ahmad, I. (2021). Diversity and distribution of the Family Poaceae along an elevation gradient in the sub-Himalayan mountains. Phytocoenologia, 50(4). https://doi.org/10.1127/phyto/2021/0378.
[33]. Fryd, O., Pauleit, S., & Bühler, O. (2012). The role of urban green space and trees in relation to climate change. CABI Reviews, (2011), 1-18. doi:10.1079/PAVSNNR20116053.
[34]. Gagnon, E., Ringelberg, J. J., Bruneau, A., Lewis, G. P., & Hughes, C. E. (2019). Global succulent biome phylogenetic conservatism across the pantropical Caesalpinia group (Leguminosae). New Phytologist, 222(4), 1994–2008. https://doi.org/10.1111/nph.15633.
[35]. Glicksman, R. L., & Page, J. (2022). Adaptive management and NEPA: How to reconcile predictive assessment in the face of uncertainty with natural resource management flexibility and success. Harv. Env't L. Rev., 46, 121.
[36]. Gabay, R., Plitmann, U., & Danin, A. (1994). Factors affecting the dominance of Silybum marianum L.(Asteraceae) in its specific habitats. Flora, 189(3), 201–206. https://doi.org/10.1016/S0367-2530(17)30594-7.
[37]. Garfì, G., Mercati, F., Fontana, I., Collesano, G., Pasta, S., Vendramin, G. G., De Michele, R., & Carimi, F. (2013). Habitat features and genetic integrity of wild grapevine Vitis vinifera L. subsp. sylvestris (CC Gmel.) Hegi populations: A case study from Sicily. Flora-Morphology, Distribution, Functional Ecology of Plants, 208(8–9), 538–548.
[38]. Habibullah, M. S., Din, B. H., Tan, S.-H., & Zahid, H. (2022). Impact of climate change on biodiversity loss: global evidence. Environmental Science and Pollution Research, 29(1), 1073-1086. https://doi.org/10.1016/j.flora.2013.08.005
[39]. Hanley, P. A., Arndt, S. K., Livesley, S. J., & Szota, C. (2021). Relating the climate envelopes of urban tree species to their drought and thermal tolerance. Science of the Total Environment, 753, 142012. https://doi.org/10.1016/j.scitotenv.2020.142012
[40]. Haroon, A. M., & Abd Ellah, R. G. (2021). Variability response of aquatic macrophytes in inland lakes: A case study of Lake Nasser. Egyptian Journal of Aquatic Research, 47(3), 245-252. https://doi.org/10.1016/j.ejar.2021.07.004
.[41]. Huda, M. N., Hasan, M., Abdullah, H. M., & Sarker, U. (2019). Spatial distribution and genetic diversity of wild date palm (Phoenix sylvestris) growing in coastal Bangladesh. Tree Genetics & Genomes, 15(1), 3. https://doi.org/10.1007/s11295-018-1310-9
[42]. Hunt, J. R., Cousens, R. D., & Knights, S. E. (2009). Heliotropium europaeum only germinates following sufficient rainfall to allow reproduction. Journal of Arid Environments, 73(6–7), 602–610. https://doi.org/10.1016/j.jaridenv.2009.01.002
[43]. [Iqbal, U., Hameed, M., Ahmad, F., Ahmad, M. S. A., Ashraf, M., Kaleem, M., Shah, S. M. R., & Irshad, M. (2022). Contribution of structural and functional modifications to wide distribution of Bermuda grass Cynodon dactylon (L) Pers. Flora, 286, 151973. https://doi.org/10.1016/j.flora.2021.151973
[44]. Islam, K. N., Rana, L. R. S., Islam, K., Hossain, M. S., Hossain, M. M., & Hossain, M. A. (2021). Climate change and the distribution of two Ficus spp. in Bangladesh–predicting the spatial shifts. Trees, Forests and People, 4, 100086. https://doi.org/10.1016/j.tfp.2021.100086
[45]. Jakubas, E., & Gabka, M. (2013). Distribution patterns of three Potamogeton species (P. crispus, P. nodosus and P. pectinatus) along velocity and base richness gradients from a lowland river. Roczniki Akademii Rolniczej w Poznaniu. Botanika-Steciana, 17.
[46]. Jeddi, K., & Chaieb, M. (2012). Restoring degraded arid Mediterranean areas with exotic tree species: Influence of an age sequence of Acacia salicina on soil and vegetation dynamics. Flora-Morphology, Distribution, Functional Ecology of Plants, 207(9), 693–700. https://doi.org/10.1016/j.flora.2012.07.002
[47]. Kabisch, N., Frantzeskaki, N., Pauleit, S., Naumann, S., Davis, M., Artmann, M., Stadler, J. (2016). Nature-based solutions to climate change mitigation and adaptation in urban areas: perspectives on indicators, knowledge gaps, barriers, and opportunities for action. Ecology and Society, 21(2). https://www.jstor.org/stable/26270403
[48]. Khodahami, G., Esfahan, E. Z., & Assareh, M. H. (2014). Salinity tolerance of Atriplex leucoclada under greenhouse condition and natural habitats of Fars province. Iranian Journal of Range and Desert Research, 21(2), 274-282.
[49]. Kirkpatrick, J. B., & Gibson, N. (1999). Towards an explanation of the altitudinal distributions of three species of Eucalyptus in central Tasmania. Australian Journal of Ecology, 24(2), 123–131. https://doi.org/10.1046/j.1442-9993.1999.241955.x
[50]. Kuller, M., Bach, P. M., Ramirez-Lovering, D., & Deletic, A. (2017). Framing water sensitive urban design as part of the urban form: a critical review of tools for best planning practice. Environmental Modelling & Software, 96, 265-282. https://doi.org/10.1016/j.envsoft.2017.07.003
[51]. Kyriakopoulos, G. L., & Sebos, I. (2023). Enhancing climate neutrality and resilience through coordinated climate action: Review of the synergies between mitigation and adaptation actions.
Climate, 11(5), 105. https://doi.org/
10.3390/cli11050105
[52]. Larcher, W. (2003). Physiological plant ecology: ecophysiology and stress physiology of functional groups. Springer Science & Business Media.
[53]. Lambers, H., Chapin III, F. S., & Pons, T. L. (2019). Plant physiological ecology. Springer Science & Business Media
[54]. Leal, J. E. (2020). AHP-express: A simplified version of the analytical hierarchy process method. METHODSX, 7, 100748. https://doi.org/10.1016/j.mex.2019.11.021
[55]. Leakey, R. R. B., & Last, F. T. (1980). Biology and potential of Prosopis species in arid environments, with particular reference to P. cineraria. Journal of Arid Environments, 3(1), 9–24. https://doi.org/10.1016/S0140-1963(18)31672-0
[56]. Li, Q.-Y., Munawar, M., Saeed, M., Shen, J.-Q., Khan, M. S., Noreen, S., Alagawany, M., Naveed, M., Madni, A., & Li, C.-X. (2022). Citrullus colocynthis (L.) Schrad (Bitter Apple Fruit): Promising traditional uses, pharmacological effects, aspects, and potential applications. Frontiers in Pharmacology, 12, 791049. https://doi.org/10.3389/fphar.2021.791049
[57]. Lokhande, V. H., Nikam, T. D., & Suprasanna, P. (2009). Sesuvium portulacastrum (L.) L. a promising halophyte: cultivation, utilization and distribution in India. Genetic Resources and Crop Evolution, 56(5), 741–747. https://doi.org/10.1007/s10722-009-9435-1
[58]. Lonard, R. I., Judd, F. W., DeYoe, H. R., & Stalter, R. (2020). Biology of the mangal halophyte Conocarpus erectus L.: A review. Handbook of Halophytes: From Molecules to Ecosystems towards Biosaline Agriculture, 1–13. DOI:10.1007/978-3-030-57635-6_72
[59]. Lonard, R. I., Judd, F. W., & Stalter, R. (2015). Biological Flora of Coastal Dunes and Wetlands: Paspalum vaginatum Sw. Journal of Coastal Research, 31(1), 213–223. DOI: 10.2112/JCOASTRES-D-14-00022.1
[60]. Maldonado, N. G., López, M. J., Caudullo, G., & De Rigo, D. (2016). Olea europaea in Europe: Distribution, habitat, usage and threats. European Atlas of Forest Tree Species, Publ. Off. EU, Luxembourg. Pp. 01534b.
[61]. Mandal, G., & Joshi, S. P. (2015). Eco-physiology and habitat invasibility of an invasive, tropical shrub (Lantana camara) in western Himalayan forests of India. Forest Science and Technology, 11(4), 182–196. https://doi.org/10.1080/21580103.2014.990062
[62]. Martínez-Macias, K. J., Márquez-Guerrero, S. Y., Martínez-Sifuentes, A. R., & Segura-Castruita, M. Á. (2022). Habitat suitability of fig (Ficus carica L.) in Mexico under current and future climates. Agriculture, 12(11), 1816. https://doi.org/10.3390/agriculture12111816
[63]. Mehrabian, A., Mahiny, A. S., Mostafavi, H., & Liaghati, H. (2010). Vegetation Mapping of the Mond Protected Area of Bushehr Province (SW Iran). In Satellite Communications. IntechOpen.
[64]. Monacella, R., & Keane, B. (2022). Designing landscape architectural education: Studio ecologies for unpredictable futures: Taylor & Francis.
[65]. Mooney, H., Larigauderie, A., Cesario, M., Elmquist, T., Hoegh-Guldberg, O., Lavorel, S., . . . Yahara, T. (2009). Biodiversity, climate change, and ecosystem services. Current Opinion in Environmental Sustainability, 1(1), 46-54. https://doi.org/10.1016/j.cosust.2009.07.006
[66]. Motti, R., Bonanomi, G., & Stinca, A. (2020). Deteriogenic flora of the Phlegraean Fields Archaeological Park: ecological analysis and management guidelines. Nordic Journal of Botany, 38(5). https://doi.org/10.1111/njb.02627
[67]. Muhammad, G., Hussain, M. A., Anwar, F., Ashraf, M., & Gilani, A. (2015). Alhagi: a plant genus rich in bioactives for pharmaceuticals. Phytotherapy Research, 29(1), 1–13. https://doi.org/10.1002/ptr.5222
[68]. Namiranian, M., Lotfian, H., Sadeghi, S. M., & Javanshir, K. (2008, September). Ecological investigation on christ-thorn (Ziziphus spina-christi L.) in Bushehr province. In I International Jujube Symposium 840 (pp. 189-196). https://doi.org/10.17660/ActaHortic.2009.840.23
[69]. Olson, A., Paul, J., & Freeland, J. R. (2009). Habitat preferences of cattail species and hybrids (Typha spp.) in eastern Canada. Aquatic Botany, 91(2), 67–70. https://doi.org/10.1016/j.aquabot.2009.02.003
[70]. Ordóñez, C., & Duinker, P. (2015). Climate change vulnerability assessment of the urban forest in three Canadian cities. Climatic Change, 131(4), 531-543. https://doi.org/10.1007/s10584-015-1394-2
[71]. Ordóñez, C., & Duinker, P. N. (2014). Assessing the vulnerability of urban forests to climate change. Environmental Reviews, 22(3), 311-321. https://doi.org/10.1139/er-2013-0078
[73]. Packer, J. G., Meyerson, L. A., Skálová, H., Pyšek, P., & Kueffer, C. (2017). Biological flora of the british isles:phragmites australis.
Journal of Ecology, 105(4), 1123-1162.
https://doi.org/10.1111/1365-2745.12797
[74]. Pakravan, M., & Assadi, M. (2024). A synopsis of the genus Ranunculus (Ranunculaceae) in Iran. The Iranian Journal of Botany, 30(1), 39–53. DOI: 10.22092/ijb.2024.364200
[75]. Parmesan, C., Morecroft, M. D., & Trisurat, Y. (2022). Climate change 2022: Impacts, adaptation and vulnerability. GIEC.
[76]. Patel, J. J., Acharya, S. R., & Acharya, N. S. (2014). Clerodendrum serratum (L.) Moon.–A review on traditional uses, phytochemistry and pharmacological activities. Journal of Ethnopharmacology, 154(2), 268–285. https://doi.org/10.1016/j.jep.2014.03.071
[77]. Pełechaty, M., Pronin, E., & Pukacz, A. (2014). Charophyte occurrence in Ceratophyllum demersum stands. Hydrobiologia, 737(1), 111–120. https://doi.org/10.1007/s10750-013-1622-6
[78]. Poonia, G., & Kumar, S. (2024). Exploring Bioactive Compounds in Underutilized Fruit Crops of Arid and Semi-Arid Regions: A Comprehensive Review. Journal of Scientific Research and Reports, 30(7), 728–742. DOI : 10.9734/jsrr/2024/v30i72184
[79]. Priyadi, A. (2021, May). Species distribution models for two subspecies of Dodonaea viscosa (Sapindaceae) in Indonesia. In IOP Conference Series: Earth and Environmental Science (Vol. 743, No. 1, p. 012027). IOP Publishing. DOI 10.1088/1755-1315/743/1/012027
[80]. Priyashree, S., Jha, S., & Pattanayak, S. P. (2010). A review on Cressa cretica Linn.: A halophytic plant. Pharmacognosy Reviews, 4(8), 161. doi: 10.4103/0973-7847.70910
[81]. Radhakrishnan, M., Pathirana, A., Ashley, R. M., Gersonius, B., & Zevenbergen, C. (2018). Flexible adaptation planning for water sensitive cities. Cities, 78, 87-95. https://doi.org/10.1016/j.cities.2018.01.022
[82]. Rahman Neamah, S., D Mohsin, H., & Hameed Kamil, Z. (2021). Phytochemical Screening and Antibacterial Effect of Methanol Extracts of Suaeda aegyptiaca Leaves on Staphylococcus aureus, Staphylococcus epidermidis, Escherichia coli, and Pseudomonas aeruginosa. Archives of Razi Institute, 76(5), 1343–1349. https://doi.org/10.22092/ari.2021.356133.1784
[83]. Rędzińska, K., & Piotrkowska, M. (2020). Urban planning and design for building neighborhood resilience to climate change. Land, 9(10), 387. https://doi.org/10.3390/land9100387
[84]. Riechers, M., Barkmann, J., & Tscharntke, T. (2018). Diverging perceptions by social groups on cultural ecosystem services provided by urban green. Landscape and Urban Planning, 175, 161-168. doi:10.1016/j.landurbplan.2018.03.017
[85]. Rogers, G. K. (1983). The genera of Alismataceae in the southeastern United States. Journal of the Arnold Arboretum, 64(3), 383–420. https://www.jstor.org/stable/43782113
[86]. Rüger, N., Schlüter, M., & Matthies, M. (2005). A fuzzy habitat suitability index for Populus euphratica in the Northern Amudarya delta (Uzbekistan). Ecological Modelling, 184(2–4), 313–328. https://doi.org/10.1016/j.ecolmodel.2004.10.010
[87]. Salisbury, F. B., & Ross, C. W. (1992). Plant Physiology. Wadsworth Publishing Co. Inc. California.
[88]. Saha, N., Singha Roy, S., Biswas, S., & Datta, S. (2017). Adaptive Soil Management: A Tool for Plant Fitness in Stressful Environment Through Microbial Integrity. In Adaptive Soil Management: From Theory to Practices (pp. 277-299). Singapore: Springer Singapore. DOI:https://doi.org/10.1007/978-981-10-3638-5_14
[89].Saeedi, I., Darabi, H., & Gili, M. R. (2023). A framework for selecting suitablespecies for the development of green infrastructure in industrial landscapes in arid and semi-arid areas of Iran. Journal of Arid Biome, 13(2), 139-157. doi:10.29252/aridbiom.2024.21065.1984
[90].Saeedi, I., Bahremand, A., & Salmanmahiny, A. (2022). Multi-criteria prioritizing of Green Infrastructure Practices and their combinations to Control Runoff in Tehran Metropolitan. Journal of Environmental Studies, 48(1), 79-100. Doi:10.22059/jes.2022.335865.1008264
[91]. Bahraman, A. S., SepehryB, A., & BaraniC, H. (2020). Plant responses to individual and combined effects of abiotic stress: Lycium depressum L. vegetative parameters under salinity and drought. Journal of Rangeland Science, 10(3), 228.
[92]. Shelef oren, Summerfield Liron , Lev-Yadun simcha, Villamarin-Cortez Santiago, Sadeh roya, Herrmann Ittai , Rachmilevitch Shimon, 2019, arianum LeavesThermal Benefits From White Variegation of Silybum marianum Leaves, Volume 10 – 2019. https://doi.org/10.3389/fpls.2019.00688.
[93]. Singh, S., Jain, S. K., Alok, S., Chanchal, D., Rashi, S., & Pradesh, U. (2016). A review on Ficus religiosa-An important medicinal plant. Int J Life Sci Rev (IJLSR), 2(1), 1–11.
[94]. Švagr, P., Gallo, J., Vítámvás, J., Podrázský, V., & Baláš, M. (2023). Potential of Morus nigra in Central Europe focused on micropropagation: A short review. J. For. Sci, 69, 463-469. DOI: 10.17221/73/2023-JFS
[95]. Taiz, L., Zeiger, E., Moller, I. M., & Murphy, A. (2014). Plant Physiology and Development. Sinauer Assotiates. Inc., Publishers Sunderland, Massachusetts. pp, 761.
[96]. Levitt, J. (1980). Responses of Plants to Environmental Stress, Volume 1: Chilling, Freezing, and High Temperature Stresses (pp. 497-pp). doi/full/10.5555/19802605739
[97]. Teixeira, C. P., Fernandes, C. O., & Ahern, J. (2022). Adaptive planting design and management framework for urban climate change adaptation and mitigation. Urban Forestry & Urban Greening, 70, 127548. https://doi.org/10.1016/j.ufug.2022.127548
[98]. Vaisova, G. B., Rakhimova, T., & Matkarimova, A. (2021). Initial Stages of Ontogenesis of Capparis spinosa L. in the Conditions of the Tashkent Botanical Garden (Uzbekistan). American Journal of Plant Sciences, 12(11), 1613–1623. DOI:10.4236/ajps.2021.1211112
[99]. Wahid, A., Gelani, S., Ashraf, M., & Foolad, M. R. (2007). Heat tolerance in plants: an overview. Environmental and Experimental Botany, 61(3), 199–223. https://doi.org/10.1016/j.envexpbot.2007.05.011
[100]. Wardlaw, I. F. (1972). Physiological Adaptations: Responses of Plants to Environmental Stresses. J. Levitt. Academic Press, New York, 1972. xiv, 698 pp., illus. $32.50. Physiological Ecology. Science, 177(4051), 786-786. DOI: 10.1126/science.177.4051.786.a
[101]. Weiglin, C., & Winter, E. (1991). Leaf structures of xerohalophytes from an East Jordanian Salt Pan. Flora, 185(6), 405–424. https://doi.org/10.1016/S0367-2530(17)30508-X
[102]. Xiao, J., & Yuizono, T. (2022). Climate-adaptive landscape design: Microclimate and thermal comfort regulation of station square in the Hokuriku Region, Japan. Building and Environment, 212, 108813. doi:
https://doi.org/10.1016/j.buildenv.2022.108813
[103]. Yadav, N., Rakholia, S., & Yosef, R. (2024). Decision Support Systems in Forestry and Tree-Planting Practices and the Prioritization of Ecosystem Services: A Review. Land, 13(2), 230. https://doi.org/10.3390/land13020230
[104]. Zandvoort, M., Kooijmans, N., Kirshen, P., & van den Brink, A. (2019). Designing with Pathways: A Spatial Design Approach for Adaptive and Sustainable Landscapes. Sustainability 2019, Vol11, Page 565, 11(3), 565-565. doi:10.3390/SU11030565.
[105]. Zangiabadi, Somayeh, et al. "Investigation of the effect of climate change on the distribution range of Prunus eburnea (Spach) Aitch. & Hemsl. using the Maxcent." Journal of Arid Biome 11.1 (2021): 63-75. DOI: 10.29252/ARIDBIOM.2021.16797.1861.