Flood hazard zoning in dry areas, using AHP-Fuzzy Model in Dashti region, south Iran

Document Type : Research Paper

Authors

1 Department of Geophysics, Faculty of Nano and Bio Science and Technology, Persian Gulf University, Bushehr, Iran

2 Assistant Professor, Department of Earth Sciences, Graduate University of Advanced Technology, Kerman, Iran

10.29252/aridbiom.2024.21525.2011

Abstract

Floods have been considered the most common natural disaster worldwide in recent years. Flood hazard potential mapping is required for the management and mitigation of flood. Climatic change and the occupation of rivers and drainage have led to floods in arid areas. The objective of this study is to assess and zoning flood risk using the AHP-FUZZY hybrid approach model in the Dashti region of Bushehr Province.  In this study, precipitation, elevation, slope, drainage density, land use, geology and soil parameters were used. These parameters have been constructed and classified in the ARC GIS Software; which were weighed according to the AHP method in AHP SOLVER software and the layers were fuzzy using the fuzzy model. Finally, by combining the AHP-FUZZY method, the flood risk assessment and zoning map were obtained.6.5% of the area is in the very high-risk range, and 27.9% is in the high-risk range.  Analysis of the final map shows that Khormuj, Sana and Shonbeh are at greater risk of flooding. The combination of the AHP-FUZZY method in previous research has confirmed that this method has great capacity in flood risk assessment and zoning. Therefore, knowing the flood potential of the basin can be effective in formulating crisis management plans when faced with floods.

Keywords

Main Subjects


[1]. Alesheikh, A. A., & Omidvari, M. (2012). Application of GIS in urban traffic noise pollution. International Journal of Occupational hygiene, 2(2), 79-84.
[2]. Bouamrane, A., Derdous, O., Dahri, N., Tachi, S.-E., Boutebba, K., & Bouziane, M. T. (2020). A comparison of the analytical hierarchy process and the fuzzy logic approach for flood susceptibility mapping in a semi-arid ungauged basin (Biskra basin: Algeria). International Journal of River Basin Management, 20(2), 203–213. doi: 10.1080/15715124.2020.1830786
 [3]. Change, L. F., Lin, C. H., & Su, M. D. (2008). Application of geographic weighted regression to establish flood-damage functions reflecting spatial variation. Water SA, 34(2), 16-29. doi: 10.4314/wsa. v34i2.183641  
[4]. Chen, J., Zhao, S., & Wang, H., (2011). Risk Analysis of Flood Disaster Based on Clustering Method. Energy Procedia, 5, 1915-1919. doi: 10.1016/j.egypro.2011.03.329
[5]. Chitsazan, M., Dehghani, F., Rastmanesh, F., & Mirzaei, Y. (2013). Solid waste disposal site selection using spatial information technologies and Fuzzy-AHP logic: (Case study: Ramhormoz). Journal of Applied RS & GIS Techniques in Natural Resource Science, 4(1), 39-55. [in Farsi]
[6]. Dadrasi, A. G., & khosroshahi, M. (2008). Desertification control via identification of suitable areas for flood control by application of conceptual models. Iranian Journal of Range and Desert Research, 15(2), 227-241. [in Farsi]
[7]. Das, S. (2020). Flood susceptibility mapping of the Western Ghat coastal belt using multi-source geospatial data and analytical hierarchy process (AHP). Remote Sensing Applications: Society and Environment, 20, 100379. doi: 10.1016/j.rsase.2020.100379
[8]. Das, S. (2018). Geographic information system and AHP-based flood hazard zonation of Vaitarna basin, Maharashtra, India. Arabian Journal of Geosciences, 11(19), 1-13. doi: 10.1007/s12517-018-3933-4
[9]. Feng, L. H., & Lu, J. (2010). The Practical Research on Flood Forecasting Based on Artificial Neural Networks. Expert Systems with Applications, 37(4), 2974-2977. doi: 10.1016/j.eswa.2009.09.037
[10]. Ghanavati, E., & Delfani-goudarzi, F. (2013). The Optimum Location Regarding Agriculture Development with Emphasis on Physical-natural Parameters in Boroojerd. Journal space economy & rural development, 2(2), 15-32.
[11]. Hooijer, A., Klijn, F., Pedroli, G.B.M., & Van Os, A.G. (2004). Towards sustainable flood risk management in the Rhine and Meuse River basins: Synopsis of the findings of IRMA-SPONGE. River Research and Applications, 20, 343-357. doi: 10. 10.1002/rra.781
[12]. Ibrahim-Bathis, K., & Ahmed, S. A. (2016). Geospatial technology for delineating groundwater potential zones in Doddahalla watershed of Chitradurga district, India. The Egyptian Journal of Remote Sensing and Space Science, 19(2), 223-234. doi: 10.1016/j.ejrs.2016.06.002
[13]. Jia, J., Wang, X., Hersi, N. A. M., & Zhao, W., & Liu, Y. (2019). Flood-Risk Zoning Based on Analytic Hierarchy Process and FUZZY Variable Set Theory. Natural Hazards Review, 20(3), 04019006. doi: 10.1061/(ASCE)NH.1527-6996.0000329
[14]. Kulimushi, L. C., Choudhari, P., Maniragaba, A., Elbeltagi, A., Mugabowindekwe, M., Rwanyiziri, G., and Singh, S. K. (2021). Erosion risk assessment through prioritization of sub-watersheds in Nyabarongo river catchment, Rwanda. Environmental Challenges, 5, 100260. doi: 10.1016/j.envc.2021.100260
[15]. Lee, S. (2007). Application and verification of FUZZY algebratic operators to landslide susceptibility mapping. Environmental Geology, 50, 847-855. doi: 10.1007/s00254-006-0491-y
[16]. Mapping and modelling mass movements and gullies in mountainous areas using remote sensing and GIS techniques Zinck J.A., Lopez J., Metternicht G.I., Shrestha D.P., Vazquez-Selem L. (2001), International Journal of Applied Earth Observation and Geoinformation, 2001 (1), 43-53. doi:10.1016/S0303-2434(01)85020-0
[17]. Malik, S., Pal, S. C., Chowdhuri, I., Chakrabortty, R., Roy, P., & Das, B. (2020). Prediction of highly flood prone areas by GIS based heuristic and statistical model in a monsoon dominated region of Bengal Basin. Remote Sensing Applications: Society and Environment, 19, 100343. doi: 10.1016/j.rsase.2020.100343
[18]. Mehrvarz Moghanlo, K., Feiz nia, S., Ghayomian, J., & Ahmadi, H. (2006). Investigation of Quaternary deposits suitable for floodwater spreading using remote sensing techniques and GIS, Case study: Tassuj plain. Iranian Journal of Range and Desert Research12(4), 437-467. doi: 10.22092/ijrdr.2019.119586 [in Farsi]
[19]. Msabi, M. M., & Makonyo, M. (2021). Flood susceptibility mapping using GIS and multi-criteria decision analysis: A case of Dodoma region, central Tanzania. Remote Sensing Applications: Society and Environment, 21, 100445. doi: 10.1016/j.rsase.2020.100445
[20]. Najafi, E., & Karimi Kerdabadi, M. (2020). Flood Risk Evaluation and Zoning using with AHP-Fuzzy Combined Model with Emphasis on Urban Safety (Case Study: Region 1 of Tehran Municipality). Journal of Geography and Environmental Hazards, 9(2), 43-60. doi: 10.22067/geo. v9i2.86110 [in Farsi]
[21]. Patrikaki, O., Kazakis, N., Kougias, I., Patsialis, T., Theodossiou, N., & Voudouris, K., (2018). Assessing flood hazard at river basin scale with an index-based approach: The case of Mouriki, Greece. Geosciences, 8(2), 1-13. doi: 10.3390/geosciences8020050
[22]. Rahmati, O., Zeinivand. H., & Besharat, M. (2015). Flood hazard zoning in Yasooj region, Iran, using GIS and multi-criteria decision analysis, Geomatics, Natural Hazards and Risk, 7(3), 1000-1017. doi: 10.1080/19475705.2015.1045043
[23]. Saaty, T. L. (1980). The Analytic Hierarchy Process: Planning, Priority Setting, Resource Allocation, McGraw-Hill International Book Company.  
[24]. Sayyad, D., Ghasemieh, H., & Naserianasl, Z. (2024). Prioritization and Spatial Analysis of Flood Potential based on FUZZY-AHP Approach (Case Study: Ghamsar Watershed). Journal of Geography and Environmental Hazards, 12(4), 139-159. doi: 10.22067/geoeh.2022.76678.1226
[25]. Souissi, D., Zouhri, L., Hammami, S., Msaddek, M. H., Zghibi, A., & Dlala, M. (2020). GIS-based MCDM–AHP modeling for flood susceptibility mapping of arid areas, southeastern Tunisia. Geocarto International, 35(9), 991-1017. doi: 10.1080/10106049.2019.1566405
[26]. Tenzin, J., & Bhaskar, A. S. (2020). Flash Flood Hazard Zone Mapping Using GIS: Sarpang. International Journal of New Innovations in Engineering and Technology, 13(1), 7-20.
[27]. Tella, A., & Balogun, A. L. (2020). Ensemble fuzzy MCDM for spatial assessment of flood susceptibility in Ibadan, Nigeria. Natural hazards, 104(3), 2277-2306. doi: 10.1007/s11069-020-04272-6
[28]. Wang, G., Liu, Y., Hu, Z., Zhang, G., Liu, J., Lyu, Y., & Liu, L. (2021). Flood Risk Assessment of Subway Systems in Metropolitan Areas under Land Subsidence Scenario: A Case Study of Beijing. Remote Sensing, 13(4), 637. doi:10.3390/rs13040637
[29]. Wang, G., Liu, Y., Hu, Z., Lyu, Y., Zhang, G., Liu, J., & Zheng, H. (2020). Flood risk assessment based on fuzzy synthetic evaluation method in the Beijing-Tianjin-Hebei metropolitan area, China. Sustainability, 12(4), 1-30. doi: 10.3390/su12041451
[30]. Yamani, M., & Enayati, M. (2006). The analyses of flood data in relation to the geomorphologic specification of Fashand and behjatabad basin. Geography Research, 37(54), 47-57. [in Farsi]
[31]. Yodying, A., Kamonchat, S., Sasithon, C., Polpreecha, C., Nattapon, M., Charatdao, K., and Sarintip, T. (2019). Flood hazard assessment using fuzzy analytic hierarchy process: A case study of Bang Rakam model in Thailand. The 40th Asian Conference on Remote Sensing (ACRS2019), October 2019, Daejeon Convention Center (DCC), Daejeon, Korea, 14-18.
[32]. Ziari, K., Rajai, S. A., & Darabkhani, R. (2021). Flood Zoning Using Hierarchical Analysis andFuzzy Logic in GISCase Study: Ilam City. Emergency Management10(1), 21-30. [in Farsi]