A framework for selecting suitable species for the development of green infrastructure in industrial landscapes in arid and semi-arid areas of Iran

Document Type : Research Paper

Authors

1 Assistant professor, Department of Environmental Sciences and Engineering, Malayer University, Malayer, Iran

2 Assistant professor, Department of Environmental Design, Department of Environment, University of Tehran, Iran

10.29252/aridbiom.2024.21065.1984

Abstract

The cement industry has always been known to have significant harmful environmental effects. The development of green infrastructure around these industries can reduce the negative environmental effects of such developments in the surroundings. However, there is no systematic framework related to the selection of plant species around cement factories. The aim of this study is to provide a systematic method for selecting plant species around cement factories. In this study, Durood Cement Factory was selected as a case study. At first, the conceptual model of plant-environment relationship in industrial environments was introduced. In the following, a functional framework for the implementation of this conceptual model is presented, which consists of five steps: identifying effective criteria, weighting criteria, developing a formula for selecting plant species, creating a plant palette, and screening suitable plant species. In the selection of criteria, two categories of primary and secondary criteria were used. The screening method of plant species selection criteria is fuzzy Delphi and the method of weighting the selection criteria is Analytical Hierarchy Process (AHP). The results of this research showed that among the five investigated plant species, Eleagnus angustifolia is the most suitable tree species for this study area, while the Platanus orientalis and Tamarix gallica are considered unsuitable. This research provides valuable insights for landscape architects, environmental managers and operators of industrial spaces, especially cement factories, to create sustainable green areas.

Keywords

Main Subjects


[1]. Adolf, A., Liu, L., Ackah, M., Li, Y., Du, Q., Zheng, D., Guo, P., Shi, Y., Lin, Q., & Qiu, C. (2021). Transcriptome profiling reveals candidate genes associated with cold stress in mulberry. Brazilian Journal of Botany, 44, 125-137.
[2]. Ahmed, M., Bashar, I., Alam, S. T., Wasi, A. I., Jerin, I., Khatun, S., & Rahman, M. (2021). An overview of Asian cement industry: Environmental impacts, research methodologies and mitigation measures. Sustainable Production and Consumption, 28, 1018-1039.
[3]. Aksoy, Ö. K. (2022). Predicting the Potential Distribution Area of the Platanus orientalis L. in Turkey Today and in the Future. Sustainability, 14(18), 11706.
[4]. Alotaibi, M. D., Alharbi, B. H., Al-Shamsi, M. A., Alshahrani, T. S., Al-Namazi, A. A., Alharbi, S. F., Alotaibi, F. S., & Qian, Y. (2020). Assessing the response of five tree species to air pollution in Riyadh City, Saudi Arabia, for potential green belt application. Environmental Science and Pollution Research, 27(23), 29156-29170. doi: 10.1007/s11356-020-09226-w
[5]. Alves, F. M., Gonçalves, A., & del Caz-Enjuto, M. R. (2022). The Use of Envi-Met for the Assessment of Nature-Based Solutions’ Potential Benefits in Industrial Parks—A Case Study of Argales Industrial Park (Valladolid, Spain). Infrastructures, 7(6), 85.
[6]. Arachchige, U. S., Alagiyawanna, A., Balasuriya, B., Chathumini, K., Dassanayake, N., & Devasurendra, J. (2019). Environmental pollution by cement industry, International Journal of Research, 6(8), 631-635.
[7]. Asgarzadeh, M., Vahdati, K., Lotfi, M., Arab, M., Babaei, A., Naderi, F., Pir Soufie, M., & Rouhani, G. (2014). Plant selection method for urban landscapes of semi-arid cities (a case study of Tehran). Urban Forestry & Urban Greening, 13(3), 450-458. doi: 10.1016//j.ufug.2014.04.006
[8]. Bayouli, I. T., Bayouli, H. T., Dell'Oca, A., Meers, E., & Sun, J. (2021). Ecological indicators and bioindicator plant species for biomonitoring industrial pollution: Eco-based environmental assessment. Ecological Indicators, 125, 107508. doi: 10.1016/j.ecolind.2021.107508
[9]. Belaïd, F. (2022). How does concrete and cement industry transformation contribute to mitigating climate change challenges? Resources, Conservation & Recycling Advances, 15, 200084. doi: 10.1016/j.rcradv.2022.200084
[10]. Bencherif, K., Boutekrabt, A., Dalpé, Y., & Sahraoui, A. L.-H. (2016). Soil and seasons affect arbuscular mycorrhizal fungi associated with Tamarix rhizosphere in arid and semi-arid steppes. Applied Soil Ecology, 107, 182-190. doi: 10.1016/j.apsoil.2016.06.003
[11]. Bencherif, K., Trodi, F., Hamidi, M., Dalpè, Y., Hadj-Sahraoui, A.L. (2020). Biological Overview and Adaptability Strategies of Tamarix Plants, T. articulata and T. gallica to Abiotic Stress. In: Giri, B., Sharma, M.P. (eds) Plant Stress Biology. Springer. doi.org/10.1007/978-981-15-9380-2_14
[12]. Broadmeadow, M. S., & Jackson, S. (2000). Growth responses of Quercus petraea, Fraxinus excelsior and Pinus sylvestris to elevated carbon dioxide, ozone and water supply. New Phytologist, 146(3), 437-451. doi: 10.1046/j.1469-8137.2000.00665.x
[13]. Bui, T. D., Tsai, F. M., Tseng, M.-L., & Ali, M. H. (2020). Identifying sustainable solid waste management barriers in practice using the fuzzy Delphi method. Resources, Conservation and Recycling, 154(4), 104625. doi: 10.1016/j.resconrec.2019.104625
[14]. Busch, P., Kendall, A., Murphy, C. W., & Miller, S. A. (2022). Literature review on policies to mitigate GHG emissions for cement and concrete. Resources, Conservation and Recycling, 182, 106278. doi: 10. 1016/j.resconrec.2022.106278
[15]. Carlucci, M. B., Brancalion, P. H., Rodrigues, R. R., Loyola, R., & Cianciaruso, M. V. (2020). Functional traits and ecosystem services in ecological restoration. Restoration Ecology, 28(6), 1372-1383. doi: 10.1111/rec.13279
[16]. Chen, S., & Yang, J. (2023). Environmental Pollution Liability Insurance Pricing and the Solvency of Insurance Companies in China: Based on the Black–Scholes Model. International Journal of Environmental Research and Public Health, 20(2), 1630. doi: 10.3390/ijerph20021630
[17]. Collins, F. (2010). Inclusion of carbonation during the life cycle of built and recycled concrete: influence on their carbon footprint. The International Journal of Life Cycle Assessment, 15(6), 549-556. doi: 10.1007/s11367-010-0191-4
[18]. Darabi, H., & Saeedi, I. (2019). The Design of Resilient Green Spaces towards Adapting with Climate Change, Case Study Behesht Boulevard, Borujerd. Journal of Environmental Science and Technology, 21(9), 209-219. doi: 10.22034/jest.2018.13302.2181
[19]. Dawson, S. K., Carmona, C. P., González-Suárez, M., Jönsson, M., Chichorro, F., Mallen-Cooper, M., Melero, Y., Moor, H., Simaika, J. P., & Duthie, A. B. (2021). The traits of “trait ecologists”: An analysis of the use of trait and functional trait terminology. Ecology and Evolution, 11(23), 16434-16445. doi: 10.1002/ece3.8321
[20]. Dhoble, Y. (2013). Environmental impact assessment of cement industry-a short note. Available at SSRN 2234380. dx.doi: 10.2139/ssrn.2234380
[21]. Dias, M. C., Azevedo, C., Costa, M., Pinto, G., & Santos, C. (2014). Melia azedarach plants show tolerance properties to water shortage treatment: an ecophysiological study. Plant Physiology and Biochemistry, 75, 123-127. doi: 10.1016/j.plaphy.2013.12.014
[22]. Dobrowolska, D., Hein, S., Oosterbaan, A., Wagner, S., Clark, J., & Skovsgaard, J. P. (2011). A review of European ash (Fraxinus excelsior L.): implications for silviculture. Forestry, 84(2), 133-148. doi: 10.1093/forestry/cpr001
[23]. Edegbene, A. O., Odume, O. N., Arimoro, F. O., & Keke, U. N. (2021). Identifying and classifying macroinvertebrate indicator signature traits and ecological preferences along urban pollution gradient in the Niger Delta. Environmental Pollution, 281, 117076. doi: 10.1016/j.envpol.2021.117076
[24]. Elawa, O., Galal, T., Abdelatif, N., Farahat, E. (2022). Evaluating the Potential Use of Four Tree Species in the Greenbelts to Mitigate the Cement Air Pollution in Egypt. Egyptian Journal of Botany, 62(1), 177-196. doi: 10.21608/EJBO.2021.94944.1780
[25]. Galusnyak, S. C., Petrescu, L., & Cormos, C.-C. (2022). Environmental impact assessment of post-combustion CO2 capture technologies applied to cement production plants. Journal of Environmental Management, 320, 115908. doi: 10.1016/j.jenvman.2022.115908
[26]. Green, S. J., Brookson, C. B., Hardy, N. A., & Crowder, L. B. (2022). Trait-based approaches to global change ecology: moving from description to prediction. Proceedings of the Royal Society B, 289(1971), 20220071. doi: 10.1098/rspb.2022.0071
[27]. Habibi, A., Jahantigh, F. F., & Sarafrazi, A. (2015). Fuzzy Delphi technique for forecasting and screening items. Asian Journal of Research in Business Economics and Management, 5(2), 130-143. doi: 10.5958/2249-7307.2015.00036.5
[28]. Huang, X., Zhu, F., He, Z., Chen, X., Wang, G., Liu, M., & Xu, H. (2020). Photosynthesis performance and antioxidative enzymes response of Melia azedarach and Ligustrum lucidum plants under Pb–Zn mine tailing conditions. Frontiers in Plant Science, 11, 571157. doi: 10.3389/fpls.2020.571157
[29]. Ige, O. E., Olanrewaju, O. A., Duffy, K. J., & Collins, O. C. (2022). Environmental Impact Analysis of Portland cement (CEM1) Using the Midpoint Method. Energies, 15(7), 2708. doi: 10.3390/en15072708
[30]. Javanmardi, E., Javanmardi, M., & Berton, R. (2022). Biomonitoring efforts to evaluate the extent of heavy metals pollution induced by cement industry in Shiraz, Iran. International Journal of Environmental Science and Technology, 19(12), 11711-11728. doi: 10.1007/s13762-022-04307-4
[31]. Kameswaran, S., Gunavathi, Y., & Krishna, P. G. (2019). Dust pollution and its influence on vegetation-a critical analysis. Research Journal of Life Sciences, Bioinformatics, Pharmaceutical and Chemical Sciences, 5(1), 341-363. doi: 10.26479/2019.0501.31
[32]. Kerr, G., & Cahalan, C. (2004). A review of site factors affecting the early growth of ash (Fraxinus excelsior L.). Forest Ecology and Management, 188(1-3), 225-234. doi: 10.1016/j.foreco.2003.07.016
[33]. Konijnendijk, C., Nilsson, K., Randrup, T., & Schipperijn, J. (2005). Urban forests and trees: a reference book, Springer.
[34]. Kozłowski, R., Szwed, M., & Żelezik, M. (2021). Environmental Aspect of the Cement Manufacturing in the Świętokrzyskie Mountains (Southeastern Poland). Minerals, 11(3), 277. doi: 10.3390/min11030277
[35]. Laughlin, D. C., Strahan, R. T., Huffman, D. W., & Sánchez Meador, A. J. (2017). Using trait‐based ecology to restore resilient ecosystems: historical conditions and the future of montane forests in western North America. Restoration Ecology, 25(S2), S135-S146. doi: 10.1111/rec.12342
[36]. Li, N., Shao, T., Zhou, Y., Cao, Y., Hu, H., Sun, Q., Long, X., Yue, Y., Gao, X., & Rengel, Z. (2021). Effects of planting Melia azedarach L. on soil properties and microbial community in saline‐alkali soil. Land Degradation & Development, 32(10), 2951-2961. doi: 10.1002/ldr.3936
[37]. Long, X., Li, N., Shao, T., Li, B., Wang, X., Tao, C., Gao, X., & Rengel, Z. (2023). Amelioration of saline-alkali land by cultivating Melia azedarach and characterization of underlying mechanisms via metabolome analysis. Land Degredation and development, 22(10) 321-340. doi: 10.22541/au.167905811.18069930/v1
[38]. Mohamad, N., Muthusamy, K., Embong, R., Kusbiantoro, A., & Hashim, M. H. (2022). Environmental impact of cement production and Solutions: A review. Materials Today: Proceedings, 48(4), 741-746. doi: 10.1016/j.matpr.2021.02.212
[39]. Molnár, V. É., Simon, E., Tóthmérész, B., Ninsawat, S., & Szabó, S. (2020). Air pollution induced vegetation stress–the air pollution tolerance index as a quick tool for city health evaluation. Ecological Indicators, 113, 106234. doi: 10.1016/j.ecolind.2020.106234
[40]. Mozafarian, V. (2010). Iranian trees and shurbs, Farhang Moaser. [in Farsi]  
[41]. Muler, A. L., Canham, C. A., van Etten, E. J., Stock, W. D., & Froend, R. H. (2018). Using a functional ecology approach to assist plant selection for restoration of Mediterranean woodlands. Forest Ecology and Management, 424, 1-10. doi: 10.1016/j.foreco.2018.04.032
[42]. Nie, S., Zhou, J., Yang, F., Lan, M., Li, J., Zhang, Z., Chen, Z., Xu, M., Li, H., & Sanjayan, J. G. (2022). Analysis of theoretical carbon dioxide emissions from cement production: Methodology and application. Journal of Cleaner Production, 334, 130270. doi: 10.1016/j.jclepro.2021.130270
[43]. Qi, Y., Li, J., Chen, C., Li, L., Zheng, X., Liu, J., Zhu, T., Pang, C., Wang, B., & Chen, M. (2018). Adaptive growth response of exotic Elaeagnus angustifolia L. to indigenous saline soil and its beneficial effects on the soil system in the Yellow River Delta, China. Trees, 32, 1723-1735. doi: 10.1007/s00468-018-1746-4
[44]. Radhapriya, P., Gopalakrishnan, A. N., Malini, P., & Ramachandran, A. (2012). Assessment of air pollution tolerance levels of selected plants around cement industry, Coimbatore, India. Journal of environmental biology, 33(3), 635.
[45]. Rehan, R., & Nehdi, M. (2005). Carbon dioxide emissions and climate change: policy implications for the cement industry. Environmental Science & Policy, 8(2), 105-114. dx.doi: 10.1016/j.envsci.2004.12.006
[46]. Rodrigues, F., & Joekes, I. (2011). Cement industry: sustainability, challenges and perspectives. Environmental Chemistry Letters, 9, 151-166. doi: 10.1007/s10311-010-0302-2
[47]. Rosenfield, M. F., & Mueller, S. C. (2017). Predicting restored communities based on reference ecosystems using a trait-based approach. Forest Ecology and Management, 391, 176-183. doi: 10.1016/j.foreco.2017.02.024
[48]. Roy, R., Wang, J., Sarker, T., Kader, A., Hasan, A. K., & Babur, E. (2022). Data describing the eco-physiological responses of Elaeagnus angustifolia grown under contrasting regime of water and fertilizer in coal-mined spoils. Data in brief, 42, 108222. doi: 10.1016/j.dib.2022.108222
[49]. Sabeti, H. (1976). Forests, trees and shrubs of Iran, Yazd University press. [in Farsi]
[50]. Saffari, A., Ataei, M., Sereshki, F., & Naderi, M. (2019). Environmental impact assessment (EIA) by using the Fuzzy Delphi Folchi (FDF) method (case study: Shahrood cement plant, Iran). Environment, development and sustainability, 21(2), 817-860. doi: 10.1007/s10668-017-0063-1
[51]. Shah, K., An, N., Ma, W., Ara, G., Ali, K., Kamanova, S., Zuo, X., Han, M., Ren, X., & Xing, L. (2020). Chronic cement dust load induce novel damages in foliage and buds of Malus domestica. Scientific reports, 10(1), 12186. doi: 10.1038/s41598-020-68902-6
[52]. Shipley, B. (2010). From plant traits to vegetation structure: chance and selection in the assembly of ecological communities. Cambridge University Press.
[53]. Si, L., Peng, X., & Zhou, J. (2019). The suitability of growing mulberry (Morus alba L.) on soils consisting of urban sludge composted with garden waste: a new method for urban sludge disposal. Environmental Science and Pollution Research, 26, 1379-1393. doi: 10.1007/s11356-018-3635-1
[54]. Solgi, E., & Beigmohammadi, F. (2020). Investigating the effect of distance from source and species type on the absorption ability of heavy metals by tree species around Nahavand cement factory. Journal of Plant Ecosystem Conservation, 8(16), 321-343.
[55]. Statista. (2023). Cement production worldwide from 1995 to 2022 Retrieved 4/3/2023 from https://www.statista.com/statistics/1087115/global-cement-production-volume/
[56]. Sugumaran, M., & Avudainayagam, S. (2017). Assessment of Plant Diversity around ACC Cement Industry, Coimbatore, India. Trends in Bioscience, 10(48), 9563-9565.
[57]. Tabari, M., & Salehi, A. (2009). The Use of Municipal Waste Water in Afforestation: Effects on Soil Properties and Eldar Pine Trees. Polish Journal of Environmental Studies, 18(6), 1113-1121.
[58]. Tan, C., Yu, X., & Guan, Y. (2022). A technology-driven pathway to net-zero carbon emissions for China's cement industry. Applied Energy, 325, 119804. doi: 10.1016/j.apenergy.2022.119804
[59]. Terwayet Bayouli, I., Terwayet Bayouli, H., Dell'Oca, A., Meers, E., & Sun, J. (2021). Ecological indicators and bioindicator plant species for biomonitoring industrial pollution: Eco-based environmental assessment. Ecological Indicators, 125, 107508. doi: 10.1016/j.ecolind.2021.107508
[60]. Tseng, Y.-P., Huang, Y.-C., Li, M.-S., & Jiang, Y.-Z. (2022). Selecting key resilience indicators for Indigenous community using Fuzzy Delphi Method. Sustainability, 14(4), 2018. doi: 10.3390/su14042018
[61]. Velikova, V., Tsonev, T., Tattini, M., Arena, C., Krumova, S., Koleva, D., Peeva, V., Stojchev, S., Todinova, S., & Izzo, L. G. (2018). Physiological and structural adjustments of two ecotypes of Platanus orientalis L. from different habitats in response to drought and re-watering. Conservation Physiology, 6(1), coy073. doi: 10.1093/conphys/coy073
[62]. Weber, E. J. (1981). Pinus eldarica: A valuable resource for arid zones. Arid Lands Newsl, 13, 41-44.  
[63]. Yu, R., Wu, Y., & Xing, D. (2022). The Differential Response of Intracellular Water Metabolism Derived from Intrinsic Electrophysiological Information in Morus alba L. and Broussonetia papyrifera (L.) Vent. Subjected to Water Shortage. Horticulturae, 8(2), 182. doi: 10.3390/horticulturae8020182
[64]. Zakharova, L., Meyer, K., & Seifan, M. (2019). Trait-based modelling in ecology: a review of two decades of research. Ecological Modelling, 407, 108703. doi: 10.1016/j.ecolmodel.2019.05.008
[65]. Zhu, X., Yang, J., Huang, Q., & Liu, T. (2022). A Review on Pollution Treatment in Cement Industrial Areas: From Prevention Techniques to Python-Based Monitoring and Controlling Models. Processes, 10(12). doi: 10.3390/pr10122682