زارعی, سمیه, احسانپور, علی اکبر. (1396). اثر تنش خشکی بر گیاهان تنباکوی تراریخت (Nicotiana tabacum L. cv. Wisconsin) حاوی ژن P5CS در شرایط کشت در شیشه. خشکبوم, 6(2), 69-82.
سمیه زارعی; علی اکبر احسانپور. "اثر تنش خشکی بر گیاهان تنباکوی تراریخت (Nicotiana tabacum L. cv. Wisconsin) حاوی ژن P5CS در شرایط کشت در شیشه". خشکبوم, 6, 2, 1396, 69-82.
زارعی, سمیه, احسانپور, علی اکبر. (1396). 'اثر تنش خشکی بر گیاهان تنباکوی تراریخت (Nicotiana tabacum L. cv. Wisconsin) حاوی ژن P5CS در شرایط کشت در شیشه', خشکبوم, 6(2), pp. 69-82.
زارعی, سمیه, احسانپور, علی اکبر. اثر تنش خشکی بر گیاهان تنباکوی تراریخت (Nicotiana tabacum L. cv. Wisconsin) حاوی ژن P5CS در شرایط کشت در شیشه. خشکبوم, 1396; 6(2): 69-82.
اثر تنش خشکی بر گیاهان تنباکوی تراریخت (Nicotiana tabacum L. cv. Wisconsin) حاوی ژن P5CS در شرایط کشت در شیشه
از آنجا که پرولین به عنوان یک اسمولیت مهم در تعدیل فشار اسمزی سلولهای تحت تنش خشکی نقش اساسی دارد، در این پژوهش، اثر تنش خشکی بر گیاهان تراریخت حاوی ژن P5CS و غیرتراریخت تنباکو مورد بررسی قرار گرفت. بدین منظور گیاهان تراریخت و غیرتراریخت در محیط کشت MS پایه حاوی غلظتهای 0، 5، 10، 20 و 30 درصد پلیاتیلنگلایکول به مدت 28 روز کشت شد. به منظور تعیین گیاهان مقاوم و حساس به خشکی و مکانیسمهای تحمل به خشکی، شاخصهایی از قبیل وزن تر و خشک، میزان رنگیزههای فتوسنتزی (کلروفیل a، b، کل و کارتنوئید)، قندهای محلول و پروتئین محلول اندازهگیری شد. در آخر الگوی پروتئینی در گیاهان تراریخت و غیرتراریخت بررسی شد. نتایج نشان داد که کاهش مولفههای فیزیولوژیکی وزن تر و خشک و نیز رنگیزههای فتوسنتزی در گیاهان تراریخت کمتر از گیاهان غیرتراریخت بوده و تحت تأثیر تنش خشکی قرار نگرفته است. میزان قندهای محلول نیز در گیاهان تراریخت و غیرتراریخت در غلظتهای 10 و 20 درصد افزایش معنیداری نسبت به نمونه شاهد نشان داد. تجزیه و تحلیل حاصل از دادههای پروتئینی نیز نشان داد که در گیاهان غیرتراریخت در غلظت 30 درصد کاهش پروتئین محلول وجود داشته، در حالیکه در گیاهان تراریخت پروتئین بدون تغییر و ثابت بود. نتایج SDS-PAGE برای بررسی تغییرات پروتئینهای تحت تنش خشکی در برگ گیاهان تراریخت و غیرتراریخت نشاندهنده تغییرات الگوی پروتئینهای گیاهان شاهد با گیاهان تحت تنش بود. همچنین تفاوت آشکاری در برخی باندها به عنوان مثال در محدوده 35 و 45 کیلو دالتون بین گیاهان تراریخت و غیرتراریخت مشاهده شد.
[1]. Abaaszade, P., Sharifi, A., Lebaschi, H., & Moghadasi, F. (2007). Effect of drought stress on prolin, soluble sugars, Chlorophyll and RWC level in Melissa oggicinalis. Iranian Journal of Medicinal and Aromatic Plants Researc, 4, 504–513, (in farsi).
[2]. Aghaei, K., Ehsanpour, A. A., & Komatsu, S. (2008). Proteome Analysis of Potato under Salt Stress. Journal of Proteome Research, 7, 4858–4868, (in Parsi).
[3]. Allagulova, C. R., Gilamov, F. R., Shakirova, F. M., & Vakhitov, V. A. (2003). The plant dehydrins: structure and functions. Biochemistry, 68, 945-951.
[4]. Arnon, D.I. (1949). Copper enzymes in isolated thloroplasts.Polyphenoloxidase in Betavulgans. Plant Physiology, 24, 1-15.
[5]. Astorga, G. I., & Melendez, L.A. (2010). Salinity effects on protein content, lipid peroxidation, pigments and proline in Paulowniaimperialis and Paulowinafortune grown invitro. Electronic Journal of Biotechnology, 5, 115.
[6]. Beinsan, C., Camen, D., Sumalan, R., & Babau, M. (2003). Study concerning salt stress effect on leaf area dynamics and chlorophyll content in four bean local landraces from Banat areas. Faculty of Horticulture, 119, 416-419.
[7]. Bensen, R. J., Boyer, J.S., & Mullet, J.E. (1988). Water deficit-induced changes in abscisic acid, growth, polyamines, translatable RNA in soybeanhypocotyls. Plant Physiology, 88, 289-294.
[8]. Biamonti, G., & Caceres, J. F. (2009). Cellular stress and RNA splicing. Trends in Biochemical Sciences, 34, 146-153.
[9]. Bjorkman, O., & Powles, S.B. (1998). Inhibition of photosynthetic reactions under water stress: interaction with light level. Planta, 161, 490-504.
[10]. Bradford, M.M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248-254.
[11]. Bray, E.A. (1997). Plant responses to water deficit. Trends in Plant Sciences, 2, 48-54.
[12]. Bray, E.A. (2002). Classification of genes differentially expressed during water-deficit stress in Arabidopsisthaliana: an analysis using microarray and differential expression data. Annuals of Botan, 89, 803-811.
[13]. Chaves, M.M., Flexas, J., & Pinheiro, C. (2009). Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Annals of Botany, 103, 551–560.
[14]. Chen, C., & Dickman, M.B. (2005). Proline suppresses apoptosis in the fungalpathogen colletotrichum trifolii. Proceeding of the National Academy of Science USA, 102, 3459-3464.
[16]. Creelman, R.A., Mason, H.G., Bensen, R.J., Boyer, J.S., & Mullet, J.E. (1990). Water deficit and abscisic acid causes inhibition of shoots versus root growth in soybean seedlings: Analysis of growth, sugar accumulation and gene expression. Plant Physiology, 92، 205-214.
[17]. Cruz de Carvalho, M.H., Arcy-Lameta, A., Roy-Macauley, H., & Gareil, M. (2001). Aspartic proteinase in leaves of common bean (Phaseolusvulgaris L.) and cowpea (Vignaunguiculata L.): enzymatic activity، gene expression and relation to drought susceptibility. FEBS Letters, 492, 242-246.
[18]. Egert, M., & Tevini, M. (2002). Influence of drought on some physiological parameters symptomatic for oxidative stress in leaves of chives (Alliumschoenoprasum). Environmental and Expperimental Botany, 48, 43-49.
[19]. Fales, F.W. (1951). The assimilation and degradation of carbohydrates by yeast cells. Journal of Biological Chemistry, 193, 113-124
[20]. Farooq, M., Wahid, A., Kobayashi, N., & Fujita, D. (2009). Plant drought stress: effects، mechanisms and management. Agronomy for Sustainable Development, 29, 185-212.
[21]. Fu, J., & Huang, B. (2001). Involvement of antioxidants and lipid peroxidation in the adaptation of two cool-season grasses to localized drought stress. Environmental Experimental Botany, 45, 105-114.
[22]. Grudkowska, M., & Zagdañska, B. (2004). Multifunctional role of plant cysteine proteinases. Acta Biochimica Polonica, 51, 609-624.
[23]. Gupta, S. C., Sharma, A., Mishra, M., Mishra, R., & Chowdhuri, D. K. (2010). Heat shock proteins in toxicology: how close and how far? Life Sciences, 86, 377-384.
[24]. Hajheidari, M., Abdollahian-Noghabi, M., Askari, H., Heidari, M., Sadeghian, S. Y., Ober, E. S., & Salekdeh, G. H. (2005). Proteome analysis of sugar beet leaves under drought stress. Proteomics, 5, 950-960, (in farsi).
[25]. Hanson, A. D., & Hitz, W. D. (1982). Metabolic responses of mesophytes to plant water deficit. Annual Review of Plant Physiology, 33, 163-203.
[26]. Hendry, G. (1993). Evolutionary origins and natural functions of fructanc. New Phytologist, 123, 3-14.
[27]. Herbinger, K., Tausz, M., Wonisch, A., Soja, G., Sorger, A., & Grill, D. (2002). Complex interactive effects of drought and ozone stress on the antioxidant defence systems of two wheat cultivars. Plant Physiology and Biochemistry, 40, 691-696.
[28]. Ingram, J., & Bartels, D. (1996). The molecular basis of dehydration tolerance in plants. Annual Review of Plant Physiology and Plant Molecular Biology, 47, 377-403.
[29]. Jinyo, D., Xiaoyang, C., Wei, L., & Qiong, G. (2004). Osmoregulation mechanism of drought stress and genetic engineering stretegies for improving drought resistance in plants. Forestry Studies in China, 6, 56-62.
[30]. Kage, H., Kochler, M., & Stutzel, H. (2004). Root growth and dry matter partitioning of Cauliflower under drought stress conditions: measurement and simulation, European Journal of Agronom, 20, 379-394.
[31]. Kerepesi, I., & Galibra, G. (2000). Osmotic and salt stress-induced alteration in soluble carbohydrate content in wheat seedlings. Crop Science, 44, 482-487.
[32]. Kiyosue, T., Yoshiba, Y., Yamagushi-Shinozalad, K., & Shinozaki, K. (1996). A nuclear gene encoding mitochondrial proline dehydrogenase، an enzyme involved in proline metabolism, is upregulated by proline but downregulated by dehydration in Arabidopsis. Plant Cell, 8, 323-1335.
[33]. Kpyoarissis, A., Petropoulou, Y., & Manetas, Y. (1995). Summer survival of leaves in a soft-leaved shrub (Phlomisfruticosa L.) under Mediterranean field conditions: avoidance of photoinhibitory damage through decreased chlorophyll contents. Journal of Experimental Botany, 46, 1825-1831.
[34]. Kraus, T.E., Mckersie, B.D., & Fletcher, R.A. (1995). Paclobutrazole induced tolerance of wheat leaves to paraquat may involve antioxidant enzyme activity. Journal of Plant Physiology, 145, 570-576.
[35]. Leport, L., Turner, N.C., French, R.J., Barr, M.D., Duda, R., Davies, S.L., Tennant, D., & Siddique, K.H.M. (1999). Physiological responses of chickpea genotypes to terminal drought in a Mediterranean type environment. European Journal of Agronomy, 11, 279-291.
[37]. Matysik, J., Alia, B.B., & Mohanty, P. (2002). Molecular mechanisms of quenching of reactive oxygen species by proline under stress in plants. Current Science, 82, 525-532.
[38]. Mishra, S., & Dubey, R.S. (2006). Inhibition of ribonuclease and protease activities in arsenic exposed rice seedlings: role of proline as enzyme protectant. Journal of Plant Physiology, 163, 927-936.
[39]. Mohammadkhani, N., & Heidari, R. (2008). Effect of drought stress on soluble proteins in two maize varieties. Turkish Journal of Biology, 32, 23-30, (in farsi).
[40]. Mohsenzade, S., Malboobi, M. A., Razavi, K., & Farrahi Aschtiani, S. (2006). Physiological and molecular responses of Aeluropuslagopoides (poaceas) to water deficit. Environmental and Experimental Botany, 56, 374-322, (in farsi).
[41]. Morgan, J. M. (1992). Osmotic components and properties associated with genotypic differences in osmoregulation in wheat. Australian Journal of Plant Physiology, 19, 67-76.
[42]. Murashige, T., & Skoog, F. (1962). A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiologia Plantarum, 15, 473-497.
[43]. Pagter, M., Bragato, C., & Brix, H. (2005). Tolerance and physiological responses of phragmites australis to water deficit. Aquatic Botany, 81, 285-299.
[44]. Paul, M., & Hasegava, A. (1996). Plant cellular and molecular responses to high salinity. Plant Physiology and Plant Molecular Biology, 51, 463- 499.
[45]. Penna, S. (2003). Building stress tolerance drought over-producing trehalose in transgenic plants. Trends in Plant Science, 8, 355-357.
[46]. Pinheiro, C., Chaves, M. M., & Ricardo, C. P. (2001). Alterations in carbon and nitrogen metabolisminduced by water deficit in the stems and leaves of Lupinusalbus L. Journal of Experimental Botany, 52, 1063-1070.
[47]. Rahdari, P., & Hoseini, S.A. (2012). Drought Stress: A Review. International journal of Agronomy and Plant Production, 3, 443-446.
[48]. Ranganayakulu, G.S., Veeranagamallaiah, G., & Sudhakar, C. (2013). Effect of salt stress on osmolyte accumulation in two groundnut cultivars (Arachishypogaea L.) with contrasting salt tolerance. African Journal of Plant Science, 7, 586-592.
[49]. Rayaptai, P.J., & Stewart, C.R. (1991). Solubilization of proline dehydrogenase from maize (Zeamays L.) mitochondria. Plant Physiology, 95, 787-791.
[50]. Razavizade, R., Ehsanpour, A.A., Ahsan, A., & Komatsu, S. (2009). Proteome analysis of tobacco leaves under salt stress. Peptides, 30, 1651-1659, (in farsi).
[51]. Razavizadeh, R., (2009) Effect of P5CS expression on some physiological and proteomics of transgenic tobacco (Nicotianatabacum L. cv. Wisconsin) under in vitro salt stress. PhD Thesis, University of Isfahann
[52]. Reddy, A.R., Chaitanya, K.V., & Vivekanandan, M. (2004). Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants. Journal of Plant Physiology, 161, 1189-1202.
[53]. Sairam, R.K. (1994). Effect of moisture stress on physiological activities of two contrasting wheat genotypes. Indian Journal of Experimental Biology, 32, 594-597.
[54]. Sairam, R. K., Deshmukh, P.S., & Saxna, D.C. (1998). Role of antioxidant systems in Wheat genotype tolerance to water stress. Biologia Plantrum, 41, 387-394.
[55]. Santos, C. (2004). Regulation of chlorophyll biosynthesis and degradation by salt stress in sunflower leaves. Scientia Horticulturae, 103, 93-99.
[56]. Sato, Y., Kawabuchi, S., Irimoto, Y., & Miyawaki, O. (2004). Effect of water activity and solvent-ordering on intermolecular interaction of high-methoxyl pectins in various sugar solutions. Food Hydrocolloids, 18, 527-534.
[57]. Siddiqi, E.H., Ashraf, M., Hussain, M., & Jamil, A. (2009). Assessment of intercultivar variation for salt tolerance in safflower (Carthamustinctorius L.) using gas exchange characteristics as selection criteria. Pakistan Journal of Botany, 41, 2251-2259.
[58]. Siripornadulsil, S., Traina, S., Verma, P.D.S., & Sayre, R.T. (2002). Molecular mechanism of proline mediated tolerance to toxic heavy metals in transgenic microalgae. Plant Cell, 14, 2837-2847.
[59]. Tahir, M.H.N., & Mehdi, S.S. (2001). Evaluation of open pollinated sunflower (Helianthusannuus L.) populations under water stress and normal conditions. International Journal of Agriculture and Biology, 3, 236-238.
[60]. Tayebi, A., Afshari, H., Farahvash, F., Sinki, M.J., & Nezarat, S. (2012). Effect of drought stress and different planting dates on safflower yield and its components in Tabriz region'. Iranian Journal of Plant Physiology, 2, 445–453, (in farsi).
[62]. Yamada, M., Morishita, H., Urano, K., Shiozaki, N., Yamagushi-Shinozaki, K., Shinozaki, K., & Yoshiba, Y. (2005). Effects of free proline accumulation in petunias under drought stress. Journal of Experimental Botany, 56, 1975-1981.
[63]. Yamchi, A., Rastgar Jazzii, F., Ghobadi, C., Mousavi, A., & Karkhanehee, A.A. (2005). Increasing of tolerance to osmotic stresses in tobacco Nicotianatabacum cv. Xanti through overexpression of p5cs gene. Journal of Scince and Tecnologyof Agriculture and Natural Resources, 8, 40-49, (in Farsi).