تأثیر تنظیم کننده‌های رشد بر کیفیت میوه انار رقم رباب (Punica granatume L.) تحت شرایط تنش خشکی

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشگاه ارومیه

2 موسسه تحقیقات جنگل‌ها و مراتع کشور

چکیده

یکی از محدودیت‌های مهم برای رشد و عملکرد مطلوب گیاهان به‌ویژه در مناطق خشک، دسترسی آن‌ها به آب قابل استفاده است. در سال‌های اخیر تحقیقات گسترده‌ای برای سازگار نمودن گیاهان به تنش‌های محیطی و از جمله تنش خشکی صورت گرفته است. در این تحقیق استفاده از دو تنظیم کننده رشد 24- اپی‌براسینولید و جاسمونیک اسید برای بهبود مقاومت به تنش خشکی در انار رقم رباب (Punica granatume L.) مورد توجه قرار گرفت. سه سطح آبیاری شامل آبیاری کافی (شاهد)، تنش ملایم (75% ظرفیت زراعی) و تنش متوسط ( 50% ظرفیت زراعی) و همچنین نه سطح هورمونی شامل شاهد (آب)، 24- اپی براسینولید (1/0 و 2/0 میلی‌گرم بر لیتر)، جاسمونیک اسید (1 و 2 میلی‌گرم بر لیتر) و ترکیب آن‌ها در چهار سطح در دو مقطع زمانی قبل از گلدهی و قبل از رشد سریع میوه با روش محلول‌پاشی روی برگ‌های درختان بارده انار در قالب آزمایش فاکتوریل با طرح پایه بلوک‌های کامل تصادفی در چهار تکرار اعمال گردید. نتایج نشان داد که بسیاری از متغیرهای شیمیایی و بیوشیمیایی میوه تحت تاثیر تنش خشکی قرار گرفتند. کاربرد تنظیم کننده‌های رشد 24- اپی‌براسینولید و جاسمونیک اسید موجب تغییر در میزان فنل کل آب و پوست میوه و میزان فعالیت آنتی‌اکسیدانی آب و پوست میوه شد. کاربرد ترکیبی 2/0 میلی‌گرم بر لیتر24- اپی براسینولید و 2 میلی‌گرم بر لیتر جاسمونیک اسید در شرایط رطوبتی شاهد و تنش خشکی موجب بهبود عملکرد فعالیت آنتی‌اکسیدانی پوست میوه شد. کاربرد 2 میلی‌گرم بر لیتر جاسمونیک اسید در شرایط تنش شدید خشکی موجب بهبود فعالیت آنزیم پراکسیداز آب میوه شد. با این شرایط استفاده از جاسمونیک اسید به تنهایی و یا با 24- اپی براسینولید در غلظت‌های ذکر شده می‌تواند اثر مثبتی بر عملکرد فعالیت آنتی‌اکسیدانی میوه انار داشته باشد.  

کلیدواژه‌ها


[1]. Ai, L., Li, Z.H., Xie, Z.X., Tian, X.L., Eneji, A.E., & Duan, L.S. (2008). Coronatine alleviates polyethylene glycol-induced water stress in two rice (Oryza sativa L.) cultivars. Journal Agronomy Crop Science, 194, 360-368.
[2]. Akbarpour, V., Hemmati, K., Sharifani, M., & Bashiri Sadr, Z. (2010). Multivariate analysis of physical and chemical characteristics in some pomegranate (Punica granatum) cultivars of Iran. Journal of Food, Agriculture and Environment, 8(1), 244-248.
[3].Anuradha, S., & Rao, S.S.R. (2007). The effect of brassinosteroids on radish (Raphanus sativus L.) seedlings growing under cadmium stress. Plant and Soil Environment, 53(11), 465-472.
[4]. Bajguz, A., & Hayat, S. (2009). Effects of brassinosteroids on the plant responses to environmental stresses. Plant Physiology and. Biochemistry, 47, 1-8.
[5]. Bandurska, H., Stroinski, A., & Kubis, J. (2003). The effect of jasmonic acid on the accumulation of ABA, proline and spermidine and its influence on membrane injury under water deficit in two barley genotypes. Acta Physiology Plant, 25, 279-285.
[6]. Blokhina, O., Virolainen, E., & Fagerstedt, K.V. (2003). Antioxidants, oxidative damage and oxygen deprivation stress: a Review. Annals of Botany, 91, 149-179.
 [7]. Cevik, S., & Unyayar, S. (2015). The effects of exogenous application of ascorbate and glutathione on antioxidant system in cultivated Cicer arietinum and wild type C. reticulatum under drought stress. Journal of Natural and Applied Science, 19(1), 91-97.
[8]. Chanes, B., & Mahely, A.C. (1996). Assay of catalase and peroxidase. In Colowick, S.P. and N.D. Kaplan (eds.), Methods in enzymology. Academic Press. New York, 2, 764-791.
[9]. Dhaubhadel, S., Browning, K.S., Gallie, D.R., & Krishna, P. (2002). Brassinosteroid functions to protect the translational machinery and heat-shock protein synthesis following thermal stress. The Plant Journal, 29(6), 681-691.
 [10]. Ebermann, R., & Stich, K. (1982). Peroxidase and amylase isoenzymes in the sapwood and heartwood of trees. Phytochemistry, 21, 2401-2402.
[11]. Ehteshami, S., Khani-Sari, H., & ershadi, A. (2012). Effect of Kaolin and Gibberellic Acid Application on Some Qualitative Characteristics and Reducing the Sunburn in Pomegranate Fruits (Punica granatum) cv. ‘Rabab Neiriz. Plant production Technology, 11(1), 15-23.
[12]. Gill, S.S., & Tuteja, N. (2010). Polyamines and abiotic stress tolerance in plants. Plant Signaling & Behavior, 5 (1), 26-33.
[13]. Giusti, M.M., & Wrolstad, R.E. (2003). Acylated anthocyanins from edible sources and their application in food systems. Biochemical Engineering Journal, 14, 217-225.
 [14]. Goraj, J., Wegrzynowicz-lesiak, E., & Saniewski, M. (2014). The effects of some plant growth regulator and their combination with methiyl jasmonate on anthocyanin formation in roots of Kalanchoe blossfeldiana. Journal of Horticultural Research, 22(2), 31-40.
[15]. Hura, T., Grzesiak, S., Hura, K., Thiemt, E., Tokarz, K., & Wedzony, M. (2007). Physiological and biochemical tools useful in drought-tolerance detection in genotypes of winter triticale: accumulation of ferulic acid correlates with drought tolerance. Annual Botanic, 100, 767-775.
[16]. Ibn Maaouia-Houimli, S., Ben Mansour-Gueddes, S., Dridi-Mouhandes, B., & Denden, M. (2012). 24-epibrassinolide enhances flower and fruit production of pepper (Capsicum annuum L.) under salt stress. Journal of Stress Physiology and Biochemistry, 8 (3), 224-233.
[17].Jaiti, F., Verdeil, J.L., ElHadrami, I. (2009). Effect of jasmonic acid on the induction of polyphenoloxidase and peroxidase activities in relation to date palm resistance against Fusarium oxysporum f. sp. albedinis.  Physiological and Molecular Plant Pathology, 24, 84–90.
[18]. Karami, A., Shahbazi, M., Niknam, V., Shobbar, Z., Tafreshi, R., Abedini, R., & Mabood, H. (2013). Expression analysis of dehydrin multigene family across tolerant and susceptible barley (Hordeum vulgare L.) genotypes in response to terminal drought stress. Acta Physiology Plant,  35(7), 2289-2297.
[19]. Kazemi, M. (2014). Effect of Foliar Application with Salicylic Acid and Methyl Jasmonate on Growth, Flowering, Yield and Fruit Quality of Tomato. Bulletin of Environment. Pharmacology and Life Sciences, 3(2), 154-158.
[20]. Luan, L.Y., Zhang, Z.W., Xi, Z.M., Huo, S.S., & Ma, L.M. (2013). Brassinosteroids regulate anthocyanin biosynthesis in the ripening of grape berries. South African Journal Enology and Viticulture, 34(2), 196-203.
[21]. Luhova, L., Lebeda, A., Hederorva, D., & Pec, P. (2003). Activities of  oxidase, peroxidase and catalase in seedlings of Pisum sativum L. under different light conditions. Plant Soil Environment, 49(4), 151-157.
[22]. Mac-Adam, J.W., Nelson, C.J., & Sharp, R.E. (1992). Peroxidase activity in the leaf elongation zone of tall fescue. Plant Physiology, 99, 872-878.
[23].Mena, P., Galindo, A., Collado‐Gonzalez, J., Ondono, S., Garcia‐Viguera, C., Ferreres, F., Torrecillas, A., and Gil‐Izquierdo, A. )2013(. Sustained deficit irrigation affects the colour and phytochemical characteristics of pomegranate juice. Journal of the Science of Food and Agriculture, 93(8), 1922-1927.
[24]. Mellishoa, C.D., Egeaa, I., Galindoa, A., Rodriguez, P., Rodriguez, J., Conejeroa, W., & Romojaroa, F. (2012). Pomegranate (Punica granatum L.) fruit response to different deficit irrigation conditions. Agricultural Water Management, 114, 30–36.
[25]. Mirdehghan, S.H., & Ghotbi, F. (2014). Effects of Salicylic Acid, Jasmonic Acid, and Calcium Chloride on Reducing Chilling Injury of Pomegranate (Punica granatum L.) Fruit. Journal of Agricultural Science & Technology, 16 (1), 163-173.
[26]. Mittler, R. (2006). Abiotic stress, the field environment and stress combination. Trends in Plant Science, 11, 15–19.
[27]. Nunez, M., Mazzafera, P., Mazorra, L.M., Siqueira, W.J., & Zullo, M.A.T. (2003).  Influence of a brassinsteroid analogue on antioxidant enzymes in rice grown in culture medium with NaCl. Biology Plant, 47, 67–70.
[28]. Larabi, A.L., Palou, L., Intrigliolo, D.S., Nortes, P.S., Rojas-Argudo, C., Taberner, V., Bartual, J., & Perez-Gago, M.B. (2013). Effect of sustained and regulated deficit irrigation on fruit quality of pomegranate cv. Mollar de Elche at harvest and during cold storage. Agricultural Water Management, 125, 61–70.
[29]. Passioura, J. (2007). The drought environment: physical, biological and agricultural perspectives. Journal of Experimental Botany, 58, 113–117.
[30]. Qiu, Z.B., Guo, J.L., Zhu,A.J.,  Zhang, L., & Zhang, M.M. (2014). Exogenous jasmonic acid can enhance tolerance of wheat seedlings to salt stress. Ecotoxicology and Environmental Safety, 104, 202-208.
[31]. Rao, S.S.R., Vardhini, B.V.V., Sujatha, E., & Anuradha, S. (2002). Brassinosteroids–A new class of phytohormones. Current Science, 82, 1239–1245.
[32]. Rodriguez, P., Mellisho, C.D., Conejero, W., Cruz, Z.N., Ortuno, M.F., Galindo, A., & Torrecillas, A. (2012). Plant water relations of leaves of pomegranate trees under different irrigation conditions. Environmental, 77: 19–24.
[33]. Rudell, D.R., Mattheis, J.P., & Fellman, J.K. (2002). Methyl Jasmonate Enhances Anthocyanin Accumulation and Modifies Production of Phenolics and Pigments in ‘Fuji’ Apples. Journal of The American Society fot Horticultural Science, 127, 435–441.
[34]. Santos, T.P.d., Lopes, C.M., Rodrigues, M.L., Souza, C.R.d., Ricardo-da-Silva, J.M., Maroco, J.P., Pereira, J.S., & Chaves, M.M. (2007). Effects of deficit irrigation strategies on cluster microclimate for improving fruit composition of Moscatel field-grown grapevines. Scientia Horticulturae, 112(3), 321-330.
[35]. Sasaki, Y., Asamizu, E., Shibata, D., Nakamura, Y., Kaneko, T., Awai, K., Amagai, M., Kuwata, C., Tsugane, T., Masuda, T., Shimada, H., Takamiya, K., Ohta, H., & Tabata, S. (2001). Monitoring of methyl jasmonate-responsive genes in Arabidopsis by cDNA macroarray: self-activation of jasmonic acid biosynthesis and cross-talk with other phytohormone signalling pathways. DNA Reserch, 8, 153-161.
[36]. Sayyari, M., Babalar, M., Kalantari, S., Serrano, M., & Valero. D. (2009). Effect of salicylic acid treatment on reducing chilling injury in stored pomegranates. Postharvest Biology and Technology, 53: 152–154.
[37]. Shan, C., & Liang, Z. (2010). Jasmonic acid regulates ascorbate and glutathione metabolism in Agropyron cristatum leaves under water stress. Plant Science, 178, 130–139.
[38]. Shimada, K., Fujikawa, K., Yahara, K., & Nakamura, T. (1992). Antioxidative properties of xanthin on autoxidation of soybean oil in cyclodextrin emulsion. Agricultural and Food Chemistry, 40, 945-948.
[39]. Singleton, V.L., & Rossi, J.A. (1965). Colorimetry of total phenolics with phosphomolybdic phosphotungstic acid reagents. American Journal of Enology and Viticulture, 16, 144-158.
[40]. Tatari, M., Fotouhi Gaazvini, R., Ghasemnejad, M., Mousavi, S.A., & Tabatabaii, S.Z. (2011). Morphological and biochemical characteristics of fruit in some pomegranate cultivars in climatical conditions of Saveh. Journal of plant and Seed Breeding in Iran, 27(1), 69-72, (in farsi).
[41]. Vardhini, B.V., & Rao, S.S.R. (2003). Amelioration of water stress by brassinosteroids on seed germination and seedling growth of three varieties of sorghum. Plant Growth Regulator, 41, 25–31.
[42]. Wang, S.Y., Bowman, L., & Ding, M. (2008). Methyl jasmonate enhances antioxidant activity and flavonoid content in blackberries (Rubus sp.) and promotes nonproliferation of human cancer cells. Food Chemistry, 107, 1261–1269.
[43]. Wang, S.Y., & Zheng, W. (2005). Preharvest application of methyl jasmonate increases fruit quality and antioxidant capacity in raspberries. International Journal of Food Science and Technology, 40, 187–195.
[44]. Zarei, M., Azizi, M., & Bashiri-Sadr, Z. (2010). Studies on physic –chemical properties and bioactive compounds of six pomegranate cultivars grown in Iran. Journal of Food Technology, 8(3), 112-117.