[1]. Ajdarimoghadam, M., Khosravi, M., Hoseinpoor Niknam, H., & Jafari Nadooshan, E. (2012). Drought forecasting using neuro-fuzzy system, climatic indices, rainfall and drought index (Case study: Zahedan). Journal of Geography and Development, 26, 61-72 (in Farsi).
[2]. Akbari, M., & Akbari, M. (2010). Investigation of climate change on drought and desertification (Case study: Birjand plain). The conference on application of natural geography in environmental planning, Khorramabad, Iran, (in Farsi).
[3]. Alizadeh, A. (2004). Applied Hydrology. 17th edition. University of Imam Reza, Mashad, (in Farsi).
[4]. Alizadeh, A., & Ashgar toosi, S. (2008). Development of a model for drought monitoring and forecasting (Case study: Khorasan Razavi Province). Journal of Agricultural Sciences and Industries, 22(1), 223-234, (in Farsi).
[5]. Allen, R.J., Beard, G.S., Close, A., Herczeg, A.L., Jones, P.D., & Simpson, H.J. (1996). Mean sea level pressure indices of the El Nino-Southern Oscillation: relevance to stream discharge in south-eastern Australia. CSIRO, Institute of Natural Resources and Environment, Division of Water Resources.
[6]. Anvari, S. (2008). The development of intelligent models for flow prediction using spatial distributed climatic data and snow level. MSc thesis, University of Tarbiat Modarres, (in Farsi).
[7]. Aytek, A. (2009). Co-active neurofuzzy inference system for evapotranspiration modeling. Soft Computing, 13(7), 691-700.
[8]. Aziz, K., Rahman, A., Shamseldin, A. Y., & Shoaib, M. (2013). Co-Active Neuro Fuzzy Inference System for Regional Flood Estimation in Australia. Editorial Board, 11.
[9]. Bacanli, U.G., Firat, M., & Dikbas, F. (2009). Adaptive neuro-fuzzy inference system fordrought forecasting. Stochastic Environmental Research and Risk Assessment, 23(8), 1143-154.
[10]. Bagherzade Chehre, K. (2005). Evaluation of meteorological signals in drought forecasting using artificial neural networks in Tehran province. MSc thesis, University of Tarbiat Modarres, (in Farsi).
[11]. Baldi, P. (1995). Gradient descent learning algorithm overview: A general dynamical systems perspective. Neural Networks, IEEE Transactions on, 6(1), 182-195.
[12]. Banihashemi, E. (2011). Vados zone modeling using Groundwater Vistas (Case study: Birjand plain). MSc thesis, University of Birjand, (in Farsi).
[13]. Barry, R.G., & Carleton, A.M. (2001). Synoptic and dynamic climatology. Psychology Press.
[14]. Bloutsos, A.A. etal. )2001(. Arima modeling of mean Temparature at the 1000/500 hpalayer over europe. P.95. www.cyf-kr.edu.pl/Zinied 2w/paper 009. html.
[15]. Chiew, F.H., Piechota, T.C., Dracup, J. A., & McMahon, T. A. (1998). El Nino/Southern Oscillation and Australian rainfall, streamflow and drought: Links and potential for forecasting. Journal of Hydrology, 204(1), 138-149.
[16]. Dehghani, A., Asgari, M., & Mosaedi, A. (2009). Comparison of artificial neural network with adaptive neuro-fuzzy inference system and geostatistical techniques for groundwater level interpolation (Case study: Ghazvin plain). Journal of Agriculture and Natural Resources, 16, 517-528, (in Farsi).
[17]. Edalatgostar, M., Farzadian, A., & Amiri, N. (2009). A stochastic model for drought forecasting in Shiraz. The National Conference on Water Crisis Management, Marvdasht, Iran, (in Farsi).
[18]. Estrela, M.J., Peñarrocha, D., & Millán, M. (2000). Multi‐annual drought episodes in the Mediterranean (Valencia region) from 1950–1996. A spatio‐temporal analysis. International Journal of Climatology, 20(13), 1599-1618.
[19]. Farokhnia, A., Morid, S., & Ghaemi, H. (2008). Data mining on global climatic signals for long-term drought forecasting. The 3rd conference on Iran’s Water Resources Management, Tabriz, (in Farsi).
[20]. Fattahi, E., Sedaghatkerdar, A., & Delavar, M. (2008). Long-term forecasting of precipitation using artificial neural network. Journal of Research and Development in Natural Resources, 80, 44-50, (in Farsi).
[21]. Gangully, A.R. )2002(. Forecasting Rainfall and Floods Advances and way Forward. P.32.Web.mit.edu/auroop/www/interests.html.
[22]. Hemachandra, S., & Satyanarayana, R.V.S. (2013). Co-Active Neuro-Fuzzy Inference System for prediction of electric load. International Journal of Electrical and Electronics Engineering Research, 3(2), 217-222.
[23]. Jang, J.S. (1993). ANFIS: adaptive-network-based fuzzy inference system. Systems, Man and Cybernetics, IEEE Transactions on, 23(3), 665-685.
[24]. Javan, J., & Falsoleyman, M. (2008). Water crisis and necessity of attention to agricultural water use efficiency in arid regions (Case study: Birjand plain). Journal of Geography and Development, 11, 115-138, (in Farsi).
[25]. Kholghi, M., & Hosseini, S.M. (2009). Comparison of groundwater level estimation using Neuro-Fuzzy and ordinary Kriging. Journal of Environmental Modeling and Assessment, 14(6), 729-753.
[26]. Khosravi, M. (2004). Relationship assessment between global circular patterns of northern hemisphere with Sistan and Baloochestan’s droughts. Journal of Geography and Development, 3, 167-188, (in Farsi).
[27]. Kripalani, R.H., & Kulkarni, A. (1997). Rainfall variability over South‒east Asia—connections with Indian monsoon and ENSO extremes: new perspectives. International Journal of Climatology, 17(11), 1155-1168.
[28]. Martin, M., Cremades, L. V., & Santabarbara, J.M. (1999). Analysis and modelling of time series of surface wind speed and direction. International journal of climatology, 19(2), 197-209.
[29]. Martin‐Vide, J., & Gomez, L. (1999). Regionalization of peninsular Spain based on the length of dry spells. International Journal of Climatology, 19(5), 537-555.
[30]. McKee, T.B., Doesken, N.J., & Kleist, J. (1993). The relationship of drought frequency and duration to time scales. In Proceedings of the 8th Conference on Applied Climatology (Vol. 17, No. 22, pp. 179-183). Boston, MA: American Meteorological Society.
[31]. Memarian, H., & Balasundram, S.K. (2012). Comparison between Multi-Layer Perceptron and Radial Basis Function Networks for Sediment Load Estimation in a Tropical Watershed. Journal of Water Resource & Protection, 4(10).
[32]. Memarian, H., Balasundram, S.K., & Tajbakhsh, M. (2013). An expert integrative approach for sediment load simulation in a tropical watershed. Journal of Integrative Environmental Sciences, 10(3-4), 161-178.
[34]. Morid, S., Smakhtin, V., & Bagherzadeh, K. (2007). Drought forecasting using artificial neural networks and time series of drought indices. International Journal of Climatology, 27(15), 2103-2111.
[35]. Negaresh, H., & Armesh, M. (2011). Using neural network for drought forecasting in Khash. Geographic Studies of Arid Regions, 6, 33-50, (in Farsi).
[36]. Poostizadeh, N., Mohamadvali Samani, J., & Koorepazan Dezfooli, A. (2008). Stream flow forecasting using Fuzzy system. Water Resources Research, 4(2), 23-34, (in Farsi).
[37]. Principe, J.C, Lefebvre, W.C., Lynn, G., Fancourt, C., Wooten, D. (2007). Neuro Solutions – documentation, the manual and on-line help. Version 5.05. Neuro Dimension, Inc.
[38]. Raziei, T., Daneshkar Arasteh, P., Akhtari, R., Saghafian, B. (2007). Investigation of meteorological droughts in the Sistan and Balouchestan province using the Standardized Precipitation Index and Markov chain model. Iran-Water Resource Research, 3(1), 25-35, (in Farsi).
[39]. Safdari, A. (2003). Quantitative analysis of intensity, duration and the extent of drought using precipitation data (Case study: Karoon basin). MSc thesis, University of Tehran, (in Farsi).
[40]. Sedaghat kerdar, A., & Fatahi, E. (2008). The prediction indices of drought in Iran. Journal of Geography and Development, 11, 59-76, (in Farsi).
[41]. Shirmohamadi, B., Moradi, H., Taei, M., & Moosavi, V. (2012). Comparison of artificial neural network with adaptive neuro-fuzzy inference system in drought forecasting. The 1st National Conference on Desert, Tehran, Iran, (in Farsi).
[42]. Tfwala, S.S., Wang, Y. M., Lin, Y.C. (2013). Prediction of Missing Flow Records Using Multilayer Perceptron and Coactive Neurofuzzy Inference System. The Scientific World Journal.
[43]. Wilson, D.R., & Martinez, T.R. (2003). The general inefficiency of batch training for gradient descent learning. Neural Networks, 16(10), 1429-1451.