تغییرات زمانی و مکانی مانگروهای گواتر و نایبند و برآورد شدت فعالیت‌های صیادی مؤثر بر این زیستگاه‌ها در خلیج فارس و دریای عمان

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانش‌آموخته دانشکده علوم و فناوری نانو و زیستی، دانشگاه خلیج فارس، بوشهر، ایران

2 گروه محیط زیست، پژوهشکده خلیج فارس، دانشگاه خلیج فارس، بوشهر، ایران

3 گروه علوم جنگل، دانشکده منابع طبیعی و علوم زمین، دانشگاه شهرکرد، شهرکرد، ایران

10.29252/aridbiom.2024.20817.1970

چکیده

اکوسیستم‌های مانگروها دارای خدمات اکوسیستمی فراوان هستند و نقش بسزایی در پایداری اکوسیستم ساحلی ایفا می‌کنند. بنابراین، هدف از این تحقیق، بررسی روند تغییرات زمانی و مکانی عرصه رویشگاهی مانگروهای پارک ملی دریایی نایبند و منطقه حفاظت‌شده باهوکلات و همچنین تعیین شدت فعالیت‌های صیادی به‌عنوان تهدیدات انسانی پیش روی این مانگرو است. به‌منظور بررسی روند تغییرات زمانی و مکانی مانگروها در رویشگاه‌های مورد مطالعه، چهار شاخص گیاهی NDVI، SAVI، LAI و RVI محاسبه و تغییرات آنها در بازه سال‌های 1990 تا 2019 بررسی شد. برای تعیین شدت فعالیت‌های صیادی، پس از تهیه نقشه گستره رویشگاه‌های مانگرو، 189 و 391 سلول شبکه با ابعاد 4×4 کیلومتر در سطح آب‌های ناحیه کرانه دربرگیرنده مانگروهای خلیج نایبند و گواتر ترسیم و داده‌های مربوط به موقعیت جغرافیایی و تعداد شناورهای موجود در بنادر صیادی استان بوشهر و سیستان و بلوچستان تهیه شد. نتایج حاصل از این بررسی، افزایش مساحت را در همه مانگروهای مورد مطالعه در حدفاصل سال‌های 1990 تا 2019 نشان داد. این افزایش به‌طور متوسط در خلیج نایبند، رویشگاه بیدخون از 96/32 تا 93/123 هکتار مشاهده شد و همچنین در خلیج گواتر از 76/275 تا 72/396 هکتار بوده است. برداشت از سرشاخه‌ها توسط جامعه محلی، ورود آلودگی‌های صنایع نفت و گاز، گردشگری و ورود زباله‌های تجزیه‌ناپذیر به‌دلیل نزدیکی این رویشگاه به مناطق مسکونی از جمله مهم‌ترین دلایل کاهش مانگروهای این منطقه در بازه 2000 تا 2010 است. در خلیج گواتر نیز آبزی‌پروری به‌عنوان عامل اصلی در تغییر هیدرولوژیک منطقه و کاهش این جنگل‌ها بعد از سال 2015 تاکنون بوده است. افزایش دما و افزایش سطح آب دریا به‌عنوان مهم‌ترین عوامل در افزایش استقرار و عرصه رویشگاهی مانگروهای مورد مطالعه است. همچنین نتایج نشان داد که با توجه به وضعیت فعلی رویشگاه‌های مانگرو، پراکنش جغرافیایی بنادر و تعداد شناور و قایق‌های صیادی موجود در این بنادر، مانگروهای رویشگاه گواتر نسبت به رویشگاه نایبند در معرض شدت فعالیت صیادی بالاتری قرار دارند.

کلیدواژه‌ها


[1]. Ahmed, E. A., & Abdel-Hamid, K. A. (2007). Zonation pattern of Avicennia marina and Rhizophora mucronata along the Red Sea Coast, Egypt. World Applied Sciences Journal, 2(4), 283-288.
[2]. Alongi, D. (2009). The energetics of mangrove forests. Springer Science & Business Media.
[3]. Alongi, D., Pfitzner, J., Trott, L.A., Tirendi, F., Dixon, P., Klumpp, D.W. (2005). Rapid sediment accumulation and microbial mineralization in forests of the mangrove Kandelia candel in the Jiulongjiang Estuary, China. Estuarine, Coastal and Shelf Science, 63(4), 605-618. doi: 10.1016/j.ecss.2005.01.004.
[4]. Barbier, E. B., Hacker, S. D., Kennedy, C., Koch, E. W., Stier, A. C., & Silliman, B. R. (2011). The value of estuarine and coastal ecosystem services. Ecological monographs, 81(2), 169-193. doi: 10.1890/10-1510.1
[5]. Binh, T. N. K. D., Vromant, N., Hung, N. T., Hens, L., & Boon, E. K. (2005). Land cover changes between 1968 and 2003 in Cai Nuoc, Ca Mau peninsula, Vietnam. Environment, Development and Sustainability, 7(4), 519-536. doi: 10.1007/s10668-004-6001-z
[6]. Boegh, E., Soegaard, H., Broge, N., Hasager, C. B., Jensen, N. O., Schelde, K., & Thomsen, A. (2002). Airborne multispectral data for quantifying leaf area index, nitrogen concentration, and photosynthetic efficiency in agriculture. Remote sensing of Environment, 81(2-3), 179-193. doi: 10.1016/S0034-4257(01)00342-X
[7]. Cahoon, D. R., & Hensel, P. F. (2006). High-resolution global assessment of mangrove responses to sea-level rise: a review. In E. Gilman (Ed.), Catchments to Coast. The Society of Wetland Scientists 27th International Conference (pp. 9–17). Western Pacific Regional Fishery Management Council.
[8]. Chung, C. T., Hope, P., Hutley, L. B., Brown, J., & Duke, N. C. (2023). Future climate change will increase risk to mangrove health in Northern Australia. Communications Earth & Environment, 4(1), 1-8. doi: 10.1038/s43247-023-00852-z  
[9]. Danehkar, A. (2002). Mangroves forests zonation in Gaz and Harra international wetlands, The Environment Scientific Quarterly Journal, 34, 43-49. [in Farsi]
[10]. Danekar, A., Erfani, M., Nouri, G., Aqiqi, H., Marvi Mohajer, M., & Ardakani, T. (2012). Detection of mangrove vegetation area changes at Govater Creek in Sistan & Baluchestan province. Iranian Journal of Forest, 4(3), 197-207. [in Farsi]
[11]. De Boer, W. (2002). The rise and fall of the mangrove forests in Maputo Bay, Mozambique. Wetlands Ecology and Management, 10(4), 313-322. doi: 10.1023/A:1020389420591
[12]. Duarte, C. M., Losada, I. J., Hendriks, I. E., Mazarrasa, I., & Marbà, N. (2013). The role of coastal plant communities for climate change mitigation and adaptation. Nature Climate Change, 3(11), 961-968. doi: 10.1038/nclimate1970
[13]. Ellison, J. C. (2009). Wetlands of the Pacific Island region. Wetlands Ecology and Management, 17(3), 169-206. doi: 10.1007/s11273-008-9097-3
[14]. Ellison, J. (2001). Possible impacts of predicted sea-level rise on South Pacific mangroves. In: Noye, B. & Grzechnik, M. (Eds.), Sea-level changes and their effects. World Scientific Publishing Company.
[15]. Ellison, J. C. (2015). Vulnerability assessment of mangroves to climate change and sea-level rise impacts. Wetlands Ecology and Management, 23(2), 115-137. doi: 10.1007/s11273-014-9397-8
[16]. Erfani, M. (2007). Investigating the structure and comparing the changes in the extent of mangrove habitat in the Goatar and Hor Bahu international wetlands in Sistan and Baluchistan province in order to select a protection zone. [Master dissertation, University of Tehran]. Central library of Tehran University. [in Farsi]
[17]. Eslami-Andargoli, L., Dale, P., Sipe, N., & Chaseling, J. (2009). Mangrove expansion and rainfall patterns in Moreton Bay, Southeast Queensland, Australia. Estuarine, Coastal and Shelf Science, 85(2), 292-298. doi: 10.1016/j.ecss.2009.08.011
[18]. Etemadi, H., Samadi, S. Z., Sharifikia, M., & Smoak, J. M. (2016). Assessment of climate change downscaling and non-stationarity on the spatial pattern of a mangrove ecosystem in an arid coastal region of southern Iran. Theorical and Applied Climatology, 126(1-2), 35-49. doi: 10.1007/s00704-015-1552-5
[19]. Etemadi, H., Smoak, J. M., & Abbasi, E. (2021). Spatiotemporal pattern of degradation in arid mangrove
forests of the Northern Persian Gulf. Oceanologia, 63(1), 99-114. doi: 10.1016/j.oceano.2020.10.003
[20]. Etemadi, H., Smoak, J. M., & Karami, J. (2018). Land use change assessment in coastal mangrove forests of Iran utilizing satellite imagery and CA-Markov algorithms to monitor and predict future change.  Environmental Earth Science, 77(5), 208. doi: 10.1007/s12665-018-7392-8.
[21]. Farshad, A., & Farzaneh, A. (2017). Remote sensing and geographic information system and their application in natural resources, agriculture and environment (use of analog/digital aerial photos, satellite-ultraspectral images, satellite positioning, radar, lidar and drone). (Secund edition), Education and promotion of agriculture. [in Farsi]
[22]. Ghasemi, S., Zakaria, M., Abdul-Hamid, H., Yusof, E., Danehkar, A., & Rajpar, M. N. (2010). A review of mangrove value and conservation strategy by local communities in Hormozgan province, Iran. Journal of American Science, 6(10), 329-338.
[23]. Hajarian, M. (2005). Quantitative survey of mangrove forests in Qeshm region using aerial photos and satellite images in a period of 40 years. [Master dissertation, University of Tehran]. Central library of Tehran University. [in Farsi]
[24]. Hauff, R. D., Ewel, K. C., & Jack, J., (2006). Tracking human disturbance in mangroves: estimating harvest rates on a Micronesian Island. Wetlands Ecology and Management, 14(2), 95-105. dx.doi: 10.1007/s11273-005-2567-y
[25]. Hoque Mozumder, M. M., Shamsuzzaman, M. M., Rashed-Un-Nabi, M., Karim, E. (2018). Social-ecological dynamics of the small scale fisheries in Sundarban Mangrove Forest, Bangladesh. Aquacalture and. Fisheries. 3, 38-49. doi: 10.1016/j.aaf.2017.12.002
[26]. Hosking, E. J., Bach, C. S., Applegate, R. J., Karfs, R. A., & Wallace, J. F. (2001). Mangrove monitoring using sequences of Landsat imagery in the Mary River wetlands. IGARSS 2001; 2001 IEEE International Geoscience and Remote Sensing Symposium, USA.
[27]. Jafarnia, S., Oladi, J., Hoojati, S.M., & Mir Akhor loo, K. (2016). Investigating the status and revealing the changes in the mangrove forests of Qeshm Island using satellite images between 1988 and 2008. Journal of Environmental Science and Technology (Islamic Azad University, Science and Research Branch), 18(1), 177-191. [in Farsi]
[28]. Khodabakhshi Karlai, A. (2018). Evaluating temporal and spatial changes of Iran's mangroves and estimating the terrestrial density of Naiband mangroves using Landsat images, [Master dissertation, University of Persian Gulf]. Central library of Persian Gulf University. [in Farsi]
[29]. Liu, H., Ren, H., Hui, D., Wang, W., Liao, B., & Cao, Q. (2014). Carbon stocks and potential carbon storage in the mangrove forests of China. Journal of Environmental Management, 133, 86-93. doi: 10.1016/j.jenvman.2013.11.037
[30]. López-Hoffman, L., Monroe, I., Narváez, E., Martínez-Ramos, M., & Ackerly, D. (2006). Sustainability of mangrove harvesting: how do harvesters’ perceptions differ from ecological analysis?. Ecology and Society, 11(2), 14.
[31]. Lucas, R. M., Ellison, J. C., Mitchell, A., Donnelly, B., Finlayson, M., & Milne, A. K. (2002). Use of stereo aerial photography for quantifying changes in the extent and height of mangroves in tropical Australia. Wetlands Ecology and Management, 10(2), 159-173. doi: 10.1023/A:1016547214434
[32]. Mafi-Gholami, D., & Nouri Kamari, A. (2018). An investigation of the relationship between hydrological drought occurrence and areas changes of mangroves of Hormozgan province. Journal of Marine Science and Technology17(2), 82-95. doi: 10.22113/jmst.2018.114535.2105 [in Farsi]
[33]. Mafi-Gholami, D., & Jaafari, A. (2023). Investigating the exposure of mangrove forests of the southern coast of Iran to multiple hazards. Journal of Natural Environment75(Special Issue Coastal and Marine Environment), 121-137. doi: 10.22059/jne.2023.352134.2502 [in Farsi]
[34]. Mafi-Gholami, D., & Jaafari, A. (2019). Mapping intensity of fishing activities in mangrove habitats: prerequisite for vulnerability assessment process. Journal of Marine Science and Technology18(2), 26-39. doi: 10.22113/jmst.2019.133473.2165 [in Farsi]
[35]. Mafi-Gholami, D., Mahmoudi, B., & Zenner, E. K. (2017). An analysis of the relationship between drought events and mangrove changes along the northern coasts of the Persian Gulf and Oman Sea. Estuarine, Coastal and Shelf Science, 199, 141-151. doi: 10.1016/j.ecss.2017.10.008
 [36]. Moaddab, A. R., Khabazi, M., Roosta, H. (2017). Determining the rate of salinity of Persian Gulf waters with the aid of satellite images and least squares method. Open Journal os Marin Science, 7(1), 155-168. doi: 10.4236/ojms.2017.71012
[37]. Moradi, H., Razavi, Z., Heydari Khosro, A., & Mahboobi Soofiani, N. (2014). Effects of Sediment Characteristics on the Accumulation and Transfer Rate of Heavy Metals in Mangrove Trees (Case Study: Nayband Bay and Qeshm Island). Iranian Journal of Applied Ecology, 3(8), 79-90. [in Farsi]
[38]. Rashidi J., Bonyad, A., & Rohanian, M. (2004). Determination of Avicennia Forests Area with the Use of Landset 7 Satellite Data and Study of Plant Indices in Line with Optimal Management and Prevention from Environmental Crises of South Pars Gas Complex. National Conference on Iranian Environment and Approaches for its Improvement, Rasht, Iran.
[39]. Rashidi J., Mohammadi, A., Sarab A. & Babaei, S. (2005). Separation of Avicennia Forests from Salty Coastal Lands of Boshehr Province, East, with the Use of ETM+ Satellite Data (in Assaluyeh and Naiband). National Conference on the Future of Iranian Forests, Rasht, Iran.
[40]. Rasolofoharinoro, M., Blasco, F., Bellan, M. F., Aizpuru, M., Gauquelin, T., & Denis, J. (1998). A remote sensing-based methodology for mangrove studies in Madagascar. International Journal of Remote Sensing, 19(10), 1873-1886. doi: 10.1080/014311698215036
[41]. Rowlands, G., Purkis, S., Riegl, B., Metsamaa, L., Bruckner, A. & Renaud, P. (2012). Satellite imaging coral reef resilience at regional scale. A case-study from Saudi Arabia. Marine Pollution Bulletin, 64(6), 1222-1237. doi: 10.1016/j.marpolbul.2012.03.003
[42]. Rowlands, G., Purkis, S., & Bruckner, A. (2014). Diversity in the geomorphology of shallow-water carbonate depositional systems in the Saudi Arabian Red Sea. Geomorphology222, 3-13. doi: 10.1016/j.geomorph.2014.03.014
[43]. Ruan, L., Yan, M., Zhang, L., Fan, X., & Yang, H. (2022). Spatial-temporal NDVI pattern of global mangroves: A growing trend during 2000–2018. Science of the Total Environment, 844, 157075. doi: 10.1016/j.scitotenv.2022.157075
[44]. Sadeghi, A. (2005). Investigating the process of changes in the level and density of mangrove forests in the Sea of Oman area using aerial photographs (Jask and Sirik regions). [Master dissertation, Islamic Azad University Science and Research Unit]. Central library of Islamic Azad University, Science and Research Unit. [in Farsi]
[45]. Safa Isani, H. (2006). Environmental management of Tiab and Kolahi mangrove forests based on habitat structure and changes. [Master dissertation, Islamic Azad University Science and Research Unit, Ahvaz]. Central library of Islamic Azad University Science and Research Unit, Ahvaz. [in Farsi]
[46]. Safiari, S. (2002). Mangrove Forests in Iran, Tehran. (First edition), Research Institute of Forests and Rangeland. [in Farsi]
[47]. Safiari, S. (2018). Development of mangrove forests in Iran. Iran Nature2(6), 24-33. doi: 10.22092/irn.2018.115186 [in Farsi]
[48]. Sarathchandra, C., Kambach, S., Ariyarathna, S. C., Xu, J., Harrison, R. D., Wickramasinghe, S. (2018). Significance of mangrove biodiversity conservation in fishery production and living conditions of coastal communities in Sri Lanka. Diversity, 10(2), 20.  doi: 10.3390/d1002002020
[49]. Souza Filho, P. W. M., Martins, E. D. S. F., & da Costa, F. R. (2006). Using mangroves as a geological indicator of coastal changes in the Bragança macrotidal flat, Brazilian Amazon: a remote sensing data approach. Ocean & coastal management, 49(7-8), 462-475. doi: 10.1016/j.ocecoaman.2006.04.005
[50]. Tucker, C. J. (1979). Red and photographic infrared linear combinations for monitoring vegetation. Remote sensing of Environment, 8(2), 127-150. doi: 10.1016/0034-4257(79)90013-0
[51]. Woodroffe, C. D. (1995). Response of tide-dominated mangrove shorelines in Northern Australia to anticipated sea level rise. Earth Surface Processes and Landforms, 20, 65-85. doi: 10.1002/esp.3290200107
[52]. Yang, W., Shabanov, N. V., Huang, D., Wang, W., Dickinson, R. E., Nemani, R. R., Knyazikhin, Y. & Myneni, R. B. (2006). Analysis of leaf area index products from combination of MODIS Terra and Aqua data. Remote Sensing of Environment, 104(3), 297-312. doi: 10.1016/j.rse.2006.04.016
[53] Yu, S. H., Ke, L., Wong, Y. S., and Tam, N. F. Y. (2005). Degradation of polycyclic aromatic hydrocarbons by a bacterial consortium enriched from mangrove sediments. Environment International, 31(2), 149-154. doi: 10.1016/j.envint.2004.09.008
[54]. Zaeimdar, M. (2000). Investigation of mangrove ecosystems and their position in Iran. Forest and pasture magazine. 50, 70-66. [in Farsi]