بررسی اثرات خشکسالی بر کارایی مصرف آب در اقلیم‌ و کاربری‌‌های مختلف (مطالعه موردی: استان تهران)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری رشته مدیریت و کنترل بیابان، دانشکده منابع طبیعی و علوم زمین دانشگاه کاشان، کاشان، ایران

2 استاد گروه بیابان‌زدایی، دانشکده منابع طبیعی و علوم زمین دانشگاه کاشان، کاشان، ایران

3 دانشیار گروه احیای مناطق خشک و کوهستانی، دانشکده منابع طبیعی دانشگاه تهران، کرج، ایران

4 محقق بخش تحقیقات بیابان، مؤسسه تحقیقات جنگل‌ها و مراتع کشور، سازمان تحقیقات، آموزش و ترویج کشاورزی، تهران، ایران

10.29252/aridbiom.2024.20742.1965

چکیده

در این مطالعه به بررسی اثرات خشکسالی بر کارایی مصرف آب (WUE) در اقلیم‌ و کاربری‌های مختلف استان تهران پرداخته شد. برای محاسبه کارآیی مصرف آب از محصولات تولید ناخالص اولیه (GPP)، تبخیر و تعرق (ET) حاصل از سنجنده مودیس و شاخص خشکسالی پالمر (PDSI) استفاده شد. سپس روند تغییرات شاخص تولید ناخالص اولیه، تبخیر و تعرق، کارایی مصرف آب و خشکسالی در بازه زمانی ۲۰۲۱ـ۲۰۰۱ با استفاده از رگرسیون خطی و آزمون‌های ‌من‌-کندال و شیب تخمین‌گر ‌سن محاسبه و به دنبال آن از پاسخ کارایی مصرف آب به خشکسالی در اقلیم و کاربری‌های مختلف با استفاده از آنالیز همبستگی مورد ارزیابی قرار گرفت. نتایج حاصل از بررسی روند تغییرات شاخص‌های ET، GPP و PDSI با آزمون ‌من‌-کندال نشان داد که به ترتیب ۱۵/۸۱، ۲۸/۸۶ ،۸۳/۹۹ درصد افزایش و WUE ۲۴/۷۶ درصد کاهش یافته است که این نتایج توسط آزمون شیب تخمین‌گر سن نیز تأیید شد. بررسی رابطه کارایی مصرف آب و خشکسالی در اقلیم و کاربری‌های مختلف نشان داد که در اقلیم خشک اراضی کشاورزی و بوته‌زار به ترتیب ۸۶/۹۱ و ۹۳/۷۸ درصد رابطه منفی و کاربری مرتع ۹۶/۵۱ درصد رابطه مثبت داشته است. اراضی‌کشاورزی، مرتع و بوته‌زار مربوط به اقلیم نیمه‌خشک به‌ترتیب ۳۸/۸۵، ۲۲/۶۶، ۲۷/۶۴ درصد افزایشی و در کاربری جنگل ۸۷/۸۴ درصد کاهشی بوده است. در اقلیم نیمه‌مرطوب به‌ترتیب ۴۷/۵۳، ۴۸/۶۰، ۴۱/۷۳ درصد از مساحت مورد مطالعه در کاربری‌های‌کشاورزی، مرتع و بوته‌زار رابطه مثبت و ۳۰/۹۱ درصد از کاربری جنگل رابطه منفی داشته است. در اقلیم مرطوب اثرگذاری منفی خشکسالی در ۰۴/۶۶، ۱۵/۶۱ و ۵۶/۵۰ درصد از اراضی کشاورزی، مرتع و جنگل مشاهده شده است. به‌طور کلی با توجه به نتایج ذکر شده، خشکسالی اثر منفی بر کارآیی مصرف آب در استان تهران داشته است و می‌توان گفت که مقاومت اکوسیستم در برابر خشکسالی توسط همبستگی ما‌‌بین شاخص خشکسالی و کارایی مصرف آب مشخص می‌شود.

کلیدواژه‌ها

موضوعات


[1]. Binesh, N., Nick-Sokhan, M., & Sarang, A. (2017). Trend Detection in Tehran Temperature and Precipitation during 1984-2014. Journal of Meteorological Organization, 97(41), 36-45. doi: 10.30467/NIVAR.2017.45153 [in Farsi]
[2]. Briggs, L. J., & Shantz, H. L. (1913). The water requirement of plants, in Bureau of Plant Industry Bulletin.  Journal of Water Resource and Protection, 9(12), 282–285.
[3]. Cao, R., Hu, Z., Jiang, Z., Yang, Y., Zhao, W., Wu, G., Feng, X., Chen, R., Hao, G. (2020). Shifts in ecosystem water use efficiency on china's loess plateau caused by the interaction of climatic and biotic factors over 1985-2015. Agricultural and Forest Meteorology, 291, 108100. doi: 10.1016/j.agrformet.2020.108100
[4]. Cernusak, L. A. (2018). Gas exchange and water use efficiency in plant canopies. Plant Biology, 22(1), 52-67. doi: 10.1111/plb.12939 
[5]. Chaves, M. M., Maroco, J. P., & Pereira, J. S. (2003). Understanding plant responses to drought-from genes to the whole plant. Functional plant biology, 30(3), 239-264. doi: 10.1071/FP02076
[6]. Cristiano, P., Villa, M. D., De Diego, M., Lacoretz, M., Madanes, N., & Goldstein, G. (2020). Carbon assimilation, water consumption and water use efficiency under different land use types in subtropical ecosystems: from native forests to pine plantations. Agricultural and Forest Meteorology, 291, 108094. doi: 10.1016/j.agrformet.2020.108094
[7]. Eskandari Damaneh, H., jafari, R., & soltani, S. (2018). Assessment of land degradation indices obtained from remote sensing data. Desert Management5(10), 43-56. doi: 10.22034/jdmal.2018.30661 [in Farsi]
[8]. Eskandari Damaneh, H., Eskandari Damaneh, H., Khosravi, H., & Gholami, H. (2019). Analysis and monitoring of drought using NDVI index (Case study: the west basin of Jaz Murian wetland). Rangeland, 13(3), 461-475. [in Farsi]
[9]. Eskandari Damaneh, H., Gholami, H., Khosravi, H., Mahdavi Najafabadi, R., Khoorani, A., & Li, G. (2020). Modeling Spatial and Temporal Changes in Land-Uses and Land Cover of the Urmia Lake Basin Applying Cellular Automata and Markov Chain. Geography and Environmental Sustainability, 10(2), 57-72. doi: 10.22126/ges.2020.5303.2238
[10]. Eskandari Damaneh, H., Gholami, H., Mahdavi, R., Khoorani, A., & Li, J. (2021). Assessing the land degradation using water use efficiency (WUE) and drought indices (case study: Fars province). Journal of Range and Watershed Managment74(1), 103-120. doi: 10.22059/jrwm.2021.314310.1550 [in Farsi]
[11]. Eskandari Damaneh, H., Eskandari Damaneh, H., Sayadi, Z., & Khoorani, A. (2021). Evaluation of spatiotemporal changes and correclations of aerosol optical depth, NDVI and climatic data over Iran. Iranian Journal of Range and Desert Research, 28(4), 772-786. doi: 10.22092/ijrdr.2021.125252
[12]. Eskandari Dameneh, H., Gholami, H., Telfer, M. W., Comino, J. R., Collins, A. L., & Jansen, J. D. (2021). Desertification of Iran in the early twenty-first century: Assessment using climate and vegetation indices. Scientific Reports, 11(1), 20548.
[13]. Eskandari Damaneh, H., Gholami, H., Mahdavi, R., Khoorani, A., & Li, J. (2022). Evaluation of land degradation trend using satellite imagery and climatic data (Case study: Fars province). Desert Ecosystem Engineering8(24), 49-64. doi: 10.22052/deej.2018.7.24.35
[14]. Frank, D., Reichstein, M., Bahn, M., Thonicke, K., Frank, D., Mahecha, M.D., Smith, P., van der Velde, M., Vicca, S., Babst, F., Beer, C., Buchmann, N., Canadell, J.G., Ciais, P., Cramer, W., Ibrom, A., Miglietta, F., Poulter, B., Rammig, A., Seneviratne, S.I., Walz, A., Wattenbach, M., Zavala, M.A., Zscheischler, J. (2015). Effects of climate extremes on the terrestrial carbon cycle: concepts, processes and potential future impacts. Global Change Biology. 21(8), 2861–2880. doi: 10.1111/gcb.12916
[15]. Gang, C., Wang, Z., Zhou, W., Chen, Y., Li, J., Chen, J., Qi, J., Odeh, I., & Groisman, P. (2016). Assessing the spatiotemporal dynamic of global grassland water use efficiency in response to climate change from 2000 to 2013. Journal of Agronomy and Crop Science, 202(5), 343-354. doi: 10.1111/jac.12137.
[16]. Guo, L., Sun, F., Liu, W., Zhang, Y., Wang, H., & Cui, H. (2019). Response of ecosystem water use efficiency to drought over China during 1982–2015: spatiotemporal variability and resilience. Journal of Forests, 10(7), 598. doi: org/10.3390/f10070598
[17]. Huang, L., He, B., Han, L., Liu, J., Wang, H., & Chen, Z. (2017). A global examination of the response of ecosystem water-use efficiency to drought based on MODIS data. Science of the Total Environment, 601, 1097-1107. doi: 10.1016/j.scitotenv.2017.05.084
[18]. Huang, M., & Zhai, P. (2021). Divergent responses o ecosystem water use efficiency to drought timing over Northern Eurasia. Environmental Research Letters, 16(4), 045016. doi: 10.1088/1748-9326/abf0d1
[19]. Kendall, M. G. (1970). Rank Correlation Methods. U.S.A. Hassell Street Press.
[20]. Knauer, J., Zaehle, S., Reichstein, M., Medlyn, B.E., Forkel, M., Hagemann, S., Werner, C. (2017). The response of ecosystem water-use efficiency to rising atmospheric CO2 concentrations: sensitivity and large-scale biogeochemical implications. New Phytologist, 213(4), 1654–1666. doi: 10.1111/nph.14288
[21]. Li, G., Chen, W., Li, R., Zhang, X., & Liu, J. (2021). Assessing the spatiotemporal dynamics of ecosystem water use efficiency across China and the response to natural and human activities. Ecological Indicators, 126(10), 107680. doi: 10.1016/j.ecolind.2021.107680.   
[22]. Li, Q., Li, H., Zhang, L., Zhang, S., & Chen, Y. (2018). Mulching improves yield and water-use efficiency of potato cropping in China: a meta-analysis. Field Crops Research, 221, 50-60. doi: 10.1016/j.fcr.2018.02.017.
[23]. Liu, D., Yu, C., & Zhao, F. (2018). Response of the water use efficiency of natural vegetation to drought in Northeast China. Journal of Geographical Sciences, 28(5), 611-628.
[24]. Liu, Y., Xiao, J., Ju, W., Zhou, Y., Wang, S., & Wu, X. (2015). Water use efficiency of China’s terrestrial ecosystems and responses to drought. Scientific Reports, 5, 13799. dx.doi: 10.1038/srep13799
[25]. Luo, X., Wang, Y., & Li, Y. (2023). Responses of ecosystem water use efficiency to drought in the Lancang-Mekong River Basin. Journal of Frontiers in Ecology and Evolution, 11: 1203725. doi: 10.3389/fevo.2023.1203725
[26]. Mann, H. B. (1945). Nonparametric tests against trend, Econometrica. Atmospheric and Climate Sciences, 4(2), 245-259. dx.doi: 10.2307/1907187
[27]. McDowell, N., Pockman, W.T., Allen, C.D., Breshears, D.D., Cobb, N., Kolb, T., Plaut, J., Sperry, J., West, A., Williams, D.G., Yepez, E.A. (2008). Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought?. New Phytologist, 178(4), 719-739. doi: 10.1111/j.1469-8137.2008.02436.x
[28]. Sun, Y., Piao, S., Huang, M., Ciais, P., Zeng, Z., & Cheng, L. (2016). Global patterns and climate drivers of water-use efficiency in terrestrial ecosystems deduced from satellite-based datasets and carbon cycle models. Global Ecology Biogeography, 25(3), 311-323. doi: 10.1111/geb.12411
[29]. Swann, S., Hoffman, Fm., Koven, C., & Randerson, J. (2016). Plant responses to increasing CO2 reduce estimates of climate impacts on drought severity. Proceedings of the National Academy of Sciences of the United States of America, 113(36), 10019-10024. doi: 10.1073/pnas.1604581113
[30]. Way, D. A., Katul, G. G., Manzoni, S., & Vico, G. (2014). Increasing water use efficiency along the C3 to C4 evolutionary pathway: a stomatal optimization perspective. Journal of Experimental Botany, 65, 3683–3693. doi: 10.1093/jxb/eru205  
[31]. Xingming, H., Ma, H., Ding, H., Jingxiu, Q., & Zhang, Y. (2019). Response of ecosystem water use efficiency to climate change in the Tianshan Mountains, Central Asia. Environmental Monitoring and Assessment, 191(9). doi: 10.1007/s10661-019-7673-z
[32]. Xu, H., Wang, X., Zhao, C., & Zhang, X. (2019). Responses of ecosystem water use efficiency to meteorological drought under different biomes and drought magnitudes in northern China. Agricultural and Forest Meteorology, 278, 107660. doi: 10.1016/j.agrformet.2019.107660
[33]. Yu, Z., Wang, J., Liu, S., Rentch, J. S., Sun, P., & Lu, C. (2017). Global gross primary productivity and water use efficiency changes under drought stress. Environmental Research Letters, 12, 014016. doi: https://doi.org/10.1088/1748-9326/aa5258
[34]. Yuan, Z., Wang, Y., Xu, J., Wu, Z. (2021). Effects of climatic factors on the net primary productivity in the source region of Yangtze River, China. Scientific reports, 11(8), 41598-80494. doi: 10.1038/s41598-020-80494-9  
[35]. Zhao, A., Zhang, A., Cao, S., Feng, L., & Pei, T. (2020). Spatiotemporal patterns of water use efficiency in China and responses to multi-scale drought. Theoretical and Applied Climatology, 140, 559-570. doi: 10.1007/s00704-020-03103-9
[36]. Zhou, Q., Luo, Y., Zhou, X., Cai, M., & Zhao, C. (2018). Response of vegetation to water balance conditions at different time scales across the karst area of southwestern China remote sensing approach. Science of the Total Environment, 645, 460-470. doi: 10.1016/j.scitotenv.2018.07.148
[37]. Zou, J., Ding, J., Welp, M., Huang, S., & Liu, B. (2020). Using MODIS data to analyze the ecosystem water use efficiency spatial-temporal variations across Central Asia from 2000 to 2014. Environmental Research, 182, 108985. doi: 10.1016/j.envres.2019.108985