بررسی و اولویت‌بندی عوامل مؤثر بر سازگاری بخش کشاورزی با کم‌آبی (مورد مطالعه: روستای شیرکوه، استان گیلان)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانش‌آموخته کارشناسی گروه اقتصاد کشاورزی، دانشکده علوم کشاورزی، دانشگاه گیلان، رشت، ایران

2 دانشیار گروه اقتصاد کشاورزی، دانشکده علوم کشاورزی، دانشگاه گیلان، رشت، ایران

10.29252/aridbiom.2023.20661.1957

چکیده

کم‌­آبی و خشکسالی، رونق و توسعه بخش کشاورزی، امنیت غذایی و پایداری سکونت‌گاه‌های روستایی را با چالش مواجه ساخته است. طی سال‌­های اخیر، کاهش آورد رودخانه سفیدرود به استان گیلان، تغییر اقلیم و افزایش تقاضا برای آب، منجر به بروز کم‌­آبی در مناطق روستایی و بخش کشاورزی این استان شده است. در پژوهش حاضر، مؤلفه­‌های اثرگذار بر سازگاری با کم‌آبی بخش کشاورزی روستای شیرکوه در استان گیلان بررسی گردید. در این راستا، درخت تصمیم جامع با پنج معیار و 37 زیرمعیار طراحی شد. نتایج حاصل از تحلیل نظرات 15 خبره در قالب مقایسه‌های زوجی با کاربرد رهیافت تحلیل سلسله مراتبی فازی نشان داد که معیار «دانش فنی بهره‌­بردار» با وزن نسبی 1/33 درصد بیشترین اهمیت را در سازگاری بخش کشاورزی روستای نمونه با کم‌آبی دارد. همچنین، معیارهای «اقتصادی» و «تنوع درآمدی» به ترتیب با 4/25 و 3/19 درصد در جایگاه­ بعدی قرار دارند. سه زیرمعیار «توسعه آگاهی و اطلاعات کشاورزان در مواقع بحرانی»، «تبیین راهکارهای سازگاری متناسب با سطح و درک افراد محلی» و «بهره‌­گیری از سامانه آبیاری پیشرفته» مربوط به معیار «دانش فنی بهره‌­بردار» با مجموع وزن نسبی 7/44 درصد به ترتیب بیشترین اثر را بر سازگاری بخش کشاورزی منطقه مورد مطالعه دارا می‌­باشند. همچنین، دو زیرمعیار «اشتغال در فعالیت‌های متنوع کشاورزی» و «توسعه فعالیت‌های مرتبط با گردشگری» بیش از 75 درصد وزن نسبی را در بین زیرمعیارهای تنوع درآمدی به خود اختصاص داده‌اند. یافته­‌های این پژوهش بستر مناسبی جهت شناسایی راهبردهای مناسب برای سازگاری با کم‌­آبی در بخش کشاورزی روستای شیرکوه و تدوین بسته سیاستی فراهم آورده است.

کلیدواژه‌ها

موضوعات


[1]. Abbas, A., Amjath-Babu, T.S., Kachele, H., & Muller, K. (2015). Non-structural flood risk mitigation under developing country conditions: an analysis on the determinants of willingness to pay for flood insurance in rural Pakistan. Natural Hazards, 75, 2119–2135. doi: 10.1007/s11069-014-1415-x
[2]. Afrakhteh, H., Azizpur, F., Tahmasebi, A., & Sulaimany, A. (2015). Rural adaptation strategies to drought, case study: Pshtang Village in Ravansar Township. Environmental Hazards Management, 3(3), 341-354. doi: 10.22059/jhsci.2015.56271 [in Farsi]
[3]. Alam, KH. (2015). Farmers’ adaptation to water scarcity in drought-prone environments: A case study of Rajshahi District, Bangladesh. Agricultural Water Management, 148(C), 196-206. doi: 10.1016/j.agwat.2014.10.011
[4]. Arbuckle, J.G., Morton, L., & Hobbs, J. (2013). Farmer beliefs and concerns about climate change and attitudes toward adaptation and mitigation: Evidence from lowa. Climatic Change, 118(3-4), 551-563. doi: 10.1007/s10584-013-0700-0
[5]. Azar, A. and Faraji, H. (2016). Fuzzy Management Science. Tehran, Mehraban Nashr Publishing. [in Farsi]
[6]. Babaei, M. H. (2011). Identifying the environmental effects of the dust phenomenon on the agricultural sector and providing management solutions. Master's thesis of the Department of Agricultural Extension and Education, Razi University, Kermanshah, Iran. [in Farsi]
[7]. Bryan, E., Deressa, T. T., Gbetibouo, G. A., & Ringler, C. (2009). Adaptation to climate change in Ethiopia and South Africa: options and constraints. Environmental Science & Policy, 12(4), 413-426. doi: 10.1016/j.envsci.2008.11.002
[8]. Codjoe, F. N. Y., Ocansey, C. K., Boateng, D. O., & Ofori, J. (2013). Climate change awareness and coping strategies of cocoa farmers in rural Ghana. Journal of Biology, Agriculture and Healthcare, 3(11), 19-29. doi: 10.1016/j.cliser.2022.100289
[9]. Duran, O., & Aguilo, J. (2008). Computer-aided machine-tool selection based on a Fuzzy-AHP approach. Expert System with Applications, 34, 1787-1794. doi: 10.1016/j.eswa.2007.01.046
[10]. Ebrahimi, S., Rahmanye Fazli, A., & Azizpour, F. (2022). Factors affecting the adaptation of rural settlements to the water crisis of Lake Urmia Case study: Miandoab County. Journal of Spatial Analysis Environmental Hazards, 9(3), 37-56. [in Farsi]
[11]. Fathollahi, J., Najafi, S.M.B., & Farhangian, SH. (2022). Identification and prioritization of factors affecting water scarcity in Kermanshah Province with Analytic Hierarchy Process (AHP). Journal of Water and Sustainable Development, 8(4), 33-42. doi: 10.22067/jwsd.v8i4.2108.1073 [in Farsi]
[12]. Gadédjisso-Tossou, A. (2015). Understanding farmers’ perceptions and adaptations to climate change of and variability: the case of the maritime, plateau and savannah regions of Togo. The Journal of Agricultural Science, 6, 1441-1454. doi: 10.4236/as.2015.612140
[13]. Gebrehiwot, T., & van der Veen, A. (2013). Farm level adaptation to climate change: the case of farmer’s in the Ethiopian Highlands. Environmental Management, 52(1), 29-44. doi: 10.1007/s00267-013-0039-3
[14]. Ghasemi, M., Sahebi, SH., & Mehrganmajd, J. (2020). Identify livelihood resilience strategies against drought risk from the point of view of rural households (case study: Dehestan Golmakan, Chenaran county). Environmental Sciences, 18(1), 117-136. doi: 10.29252/envs.18.1.117 [in Farsi]
[15]. Hannah, L., Donatti, C.I., Harvey, C.A., Alfaro, E., Rodriguez, D.A., Bouroncle, C., Castellanos, E., Diaz, F., Fung, E., Hidalgo, H.G., Imbach, P., Laderach, P., Landrum, J.P., & Solano, A.L. (2017). Regional modeling of climate change impacts on smallholder agriculture and ecosystems in Central America. Climatic Change, 141, 29–45. doi: 10.1007/s10584-016-1867-y
[16]. Khakifirouz, Z., Niknami, M., Keshavarz, M., & Sabouri, M.S. (2022). Drivers of Farmers’ Resilience to Drought: A Case of Sistan Plain. Iranian Journal of Extension and Education Journal, 18(1), 161-179.
[17]. Kharazmi, A., Dehghani-Tafti, A.R., Meshaal, M., & Elahdadi, I. (2013). The investigation of water crisis in Iran from the perspective of sustainable development indicators. The first national conference on strategies to achieve sustainable agriculture, Ahvaz, Iran. [in Farsi]
[18]. Kwong, C. K., & Bai, H. (2003). Determining the importance weights for the customer requirements in QFD using a fuzzy AHP with an extent analysis approach. IIE Transactions, 35, 619–626. doi: 10.1080/07408170304355
[19]. Piya, L., Maharjan, K. L., & Joshi, N. P. (2013). Determinants of adaptation practices to climate change by Chepang households in the rural Mid-Hills of Nepal. Regional Environmental Change, 13(2), 437-447. doi: 10.1007/s10113-012-0359-5
[20]. Rahmani, S., Yazdanpanah, M., Forouzani, M., & Abdeshahi, A. (2018). Investigating farmers' beliefs and strategies to adapt to water scarcity and factors affecting them in Mamassani County. Journal of Water Research in Agriculture, 32(2), 321-340. doi: 10.22092/jwra.2018.116973 [in Farsi]
[21]. Rashtchi, L., Pajoohesh, M., Assadi, E., & Yazdani, M.R. (2018). Studying the climatic drought in rice cultivation period in different parts of Guilan province using SPI index. Cereal Research, 8(1), 33-43. doi: 10.22124/c.2018.7075.1283 [in Farsi]
[22]. Rezaie, H., & Mohamadi-Yeganeh, B. (2013). An Analysis of Drought and Its Impact on Agricultural Economy and Rural Migration (Case Study: Abarkouh County in 1996-2005). Journal of Research and Rural Planning, 2(1), 153-177. doi: 10.22067/jrrp.v2i4.20544 [in Farsi]
[23]. Sanogo, K., Binam, J., Bayala, J., Villamor, G. B., Kalinganire, A., & Dodiomon, S. (2017). Farmers’ perceptions of climate change impacts on ecosystem services delivery of parklands in southern Mali. Agroforestry Systems, 91(2), 345-361. doi: 10.1007/s10457-016-9933-z
[24]. Savari, M., & Shokati Amghani, M. (2020). Adaptation strategies of small-scale farmers in confronting droughts in West Azerbaijan Province. Spatial Planning, 9(4), 17-42. doi: 10.22108/sppl.2019.116467.1373 [in Farsi]
[25]. Seyed Akhlaghi, S.J., & Taleshi, M. (2018). Improving the resilience of local communities; Future Strategy for dealing with drought Case study: Hablehrood watershed. Journal of Iran Nature, 3(3), 60-68. doi: 10.22092/irn.2018.116783 [in Farsi]
[26]. Silvestri, S., Bryan, E., Ringler, C., Herrero, M., & Okoba, B. (2012). Climate change perception and adaptation of agro-pastoral communities in Kenya. Regional Environmental Change, 12(4), 791-802. doi: 10.1007/s10113-012-0293-6
[27]. Sipahi, S., & Timor, M. (2010). The analytic hierarchy process and analytic network process: an overview of applications. Management Decision, 48(5), 775-808. doi: 10.1108/00251741011043920
[28]. Sojasi Qeidari, H., Sadeqlou, T., Hosseini Kahnuj, R., & Yazdani Marvi Langari, K. (2018). Analysis of Social Tensions Caused by Water Scarcity among Rural Farmers: Case Study of Miyanjam Rural District in Torbat-e Jam County. Interdisciplinary Studies in the Humanities, 10(4), 143-168. doi: 10.22035/isih.2018.290   [in Farsi]
[29]. Taherkhani, M. (2001). An analysis of effective factors in rural/urban migrations. Geographical Research, 16(3), 67-93. [in Farsi]
[30]. Tajeri Moghadam, M., Raheli, H., Zariffian, SH., & Yazdanpanah, M. (2013). Application of Cultural Theory in Analysis of Farmers’ Water Conservation Behavior in Neyshabur Plain. Iranian Agricultural Extension and Education Journal, 14(1), 113-129. [in Farsi]
[31]. Teisman, G., van Buurena, A., Edelenbosa, J., & Warnerb, J. (2013). Water governance: Facing the limits of managerialism, determinism, water-centricity, and technocratic problem-solving. International Journal of Water Governance, 1(1), 1-11. doi: 10.7564/12-IJWG4
[32]. Toulabi­Nejad, M., & Sadeghi, KH. (2019). Farmers' Strategies in the Face of Droughts and Examination of the Factors Affecting Those Strategies: A Case Study of Roshtkhar County. Journal of Rural Research, 9(4), 608-627. doi: 10.22059/jrur.2018.263349.1272 [in Farsi]
[33]. Zarif Moradian, SH., Daneshvar Khakhki, M., & Sabouhi Sabouni, M. (2022). The Effect of Drought on Rural Farmers Households Resilience Index. Journal of Agricultural Economics and Development, 36(3), 301-315. doi: 10.22067/jead.2022.75508.1124 [in Farsi]
[34]. Zou, Q., Zhou, J. Z., Zhou, C., Song, L. X., & Guo, J. (2013). Comprehensive flood risk assessment based on set pair analysis-variable fuzzy sets model and fuzzy AHP. Stochastic Environmental Research and Risk Assessment, 27, 525–546. doi: 10.1007/s00477-012-0598-5