بررسی و مقایسه نرم افزارهای Image J و GIAS با الک مکانیکی در دانه‌بندی خودکار ذرات سطح زمین

نوع مقاله: مقاله پژوهشی

نویسندگان

1 کارشناسی ارشد بیابان‌زدایی، دانشکده کشاورزی و منابع طبیعی، دانشگاه اردکان، اردکان، ایران.

2 استادیار گروه طبیعت دانشکده کشاورزی و منابع طبیعی، دانشگاه اردکان، اردکان، ایران.

3 استادیار دانشکده منابع طبیعی، دانشگاه یزد، یزد، ایران.

10.29252/aridbiom.2020.1814

چکیده

دانه ­بندی ذرات و توزیع اندازه آن­ها در علوم مختلف کشاورزی، منابع طبیعی و حتی فنی مهندسی و پزشکی دارای اهمیت است. در منابع طبیعی دانه­ بندی ذرات به طور سنتی با استفاده از الک­ های مکانیکی صورت می­گیرد. از آن­جا که استفاده از الک­ های مکانیکی نیازمند هزینه و زمان قابل توجهی است. در این پژوهش اقدام به بررسی قابلیت تکنیک­های پردازش تصویر برای دانه­بندی ذرات سنگ­فرش بیابان شده است. بدین ترتیب که در تیپ­ های دشت­ سر لخت و اپانداژ اقدام به نمونه­ برداری تصادفی از سنگ­فرش بیابان شد. نمونه ­ها به آزمایشگاه منتقل و با استفاده از سری الک­ های استاندارد دانه ­بندی شد. از نمونه ­های برداشت شده نیز عکس ­برداری شد. عکس ­ها با استفاده از نرم ­افزار­های Image Processing and Analysis in Java و Geological Image Analysis Softwar تجزیه و تحلیل دانه ­بندی ذرات عکس ­­برداری شده صورت گرفت. سپس نتایج به ­دست آمده از نرم ­افزار­ها با مقادیر اندازه ­گیری شده توسط سری الک ­ها مقایسه شد. نتایج این تحقیق نشان می ­دهد مقادیر به­ دست آمده برای دانه­ بندی ذرات با استفاده از نرم­ افزار Image j در ذرات دشت­ سر اپانداژ دارای همبستگی 93 و در دشت­ سر لخت 96 درصد با الک مکانیکی دارد. نتایج به­ دست آمده از همبستگی دانه­ بندی الک مکانیکی و نرم­ افزار GIAS در دشت­ سر اپانداژ دارای میانگین همبستگی 91٪ و در دشت­ سر لخت دارای همبستگی 96٪ می ­باشد. می ­توان نتیجه گرفت که استفاده از نرم ­افزار­های مذکور، می ­تواند جایگزین مناسبی برای الک ­های مکانیکی در دانه­ بندی ذرات و کاهش هزینه و زمان دانه­ بندی باشد.

کلیدواژه‌ها


[1]. Abdesharif Esfahani, M., Karbasi, M., Rajabi-hashjin, M. & Kiasalari, A. (2005). Introduction of grid photography method of riverbed for determining armored-layer gradation of a coarse-grained bed (Case study: Karaj River). 5th Iranian Hydraulic Conference, 8-10 Nov. (in Farsi)
[2]. Afrasiabi, S., Tazeh, M., Taghizadeh. R., Ghaneei, M.J., & Kalantari, S. (2019). Performance of two measurement methods of pin meter and laser disto meter in the measurement of microtopography Created by desert pavement. Desert Ecosystem Engeeniring, 8, 1-14. (in Farsi)
[3]. Ahmadi, H. (2012). Applied geomorphology, desert - wind erosion. Iran: Tehran University press. (in Farsi)
[4]. Al-Farraj, A. (2008). Desert pavement development on the lake shorelines of Lake Eyre, South Australia. Geomorphology, 100, 150-159.
[5]. Al-Farraj, A. & Harvey, A.M. (2000). Desert pavement characteristics on wadi terrace and alluvial fan surfaces, Wadi Al-Bih, U.A.E. and Oman, Geomorphology, 35(3-4), 279-297.
[6]. Azimzadeh, H. R & Ekhtesasi, M. R. (2002). Wind erosion: Study of the effect of physical and chemical properties of soil on wind erosion index and model model for predicting it in Yazd-Ardakan plain. Agricultural Sciences and Natural Resources of Gorgan, 1, 139-152. (in Farsi)
[7]. Azramsa, S, A. (2002). Dynamic of Sea Sands, Office of Scientific Publications of Tarbiat Modarres School, 26. (in Farsi)
[8]. Beggan, C. & Hamilton, C. W. (2010). New image processing software for analyzing object size-frequency distributions, geometry, orientation, and spatial distribution. Computers & Geosciences, 36(4), 539-549.
[9]. Bui, EN. Mazullo, J., & Wilding, LP. (1990). Using quartz grain size and shape analysis to distinguish between Aeolian and fluvial deposits in the Dallol Bosso of Niger (West Africa). Earth Surface Processes and Landforms, 14, 157-166.
[10].Chang, F.J. & Chung, Ch.H. (2012). Estimation of riverbed grain-size distribution using image processing techniques. Hydrology, 440, 102-112.
[11].Cheng, Z. & Liu, H. (2015). Digital grain-size analysis based on autocorrelation algorithm, Sedimentary Geology, 327, 21-31.
[12].Chung, Ch.H. & Chang, F.J. (2013). A refined automated grain sizing method for estimating river-bed grain size distribution of digital images. Hydrology, 486, 224-233.
[13].Danet, J., Yaalon, D.H., Moshe, R.,  &Nissum, S. (1982). Evolution of Reg soils in southern Israel and Sinai. Geoderma, 28, 173-202.
[14].Ekhtesasi, M.R. (1993). Preparation of erosion susceptibility map to erosion of Yazd plain lands using wind erosion measuring instrument, Master''''s thesis, Faculty of Natural Resources, University of Tehran, 237. (in Farsi)
[15].Ekhtesasi, M. R. (2009). Applied Geomorphology Booklet. Chapter 5, p. 40. (in Farsi)
[16].Fatahi, M.M., Darvish, M., Javidkia, H.R., & Adnani, M. (2010). Evaluation and Preparation of a Map of the Total Risk of Desertification by FAO-UNEP (Case Study: Qomroud Basin). Quarterly, Scientific and Research Surveys of Iran, 17(4), 575-588 (in Farsi)
[17].Fathizad, H., Tazeh, M., & Kalantari, S. (2016). Assessment of pixel-based classification (Artmap Fuzzy Neural Networks and Decision Tree) and object-oriented methods for land use mapping (Case Study: Meymeh, Ilam Province), Arid Biome, 5, 69-81. (in Farsi)
[18].Folk, R.L. & Ward, WC. (1957). Brazos River bar: a study in the significance of grain size parameters", Sedimentary Petrology, 27, 3-26.
[19].Fotouhi, F, Azimzadeh, H. R. Talebi, A., & Ekhtesasi, M. R. (2012).  Surface ImpactOn soil erodibility factor using Land Statistics, Watershed Management Engineering, 5(16), 1-12. (in Farsi)
[20].Friedman, G.M., Johnson, K.G., "Exercises in Sedimentology", Wiley: New York, 1982.
[21].Graham, D.J., Rice, S.P., & Reid, I. (2005). A transferable method for the automated grain sizing of river gravels. Water Resources Research, 7, 1-12.
[22].Javadi, P. Rohipour, H., & Mahboubi, A. A. (2005). The role of grit covers on erosion and runoff using Flume and Rain simulator, Range and Desertification, 12(3), 310-278. (in Farsi)
[23].Kargaran, F., Kalantari, S., Ghaneei, M.J., & Tazeh, M. (2017). The Compare of grading criteria in Coarse ripple Mark on the windward and leeward slopes (Case Study: Hassan Abad erg in Bafg), quantitative geomorphological research, 4(1), 134-144.
[24].Maria, J. Parez, M., & Pascau, J. (2013). Image Processing with ImageJ, Community experience distilled, 140.
[25].McManus, J. (1988). Grain size determination and interpretation", In Techniques in Sedimentology. Tucker M (Ed.). Blackwell: Oxford, 63-85.
[26].Mc Faddden, D. (1989). A Method of Simulated Moments for Estimation of Discrete Response Models without Numerical Integration, Econometrica, 57(5), 995-1026.
[27].Miri, A., Pahlavanuri, A., & Moghaddamnia, A. (2009). Investigation of the occurrence of dust haze in Sistan after the occurrence of periodic droughts, Marine and Birjan Research, 16(2), 249-292. (in Farsi)
[28].Mora, C.F. Kwan, A.K.H., & Chan. H.C. (1998). Department of Civil Engineering, the University of Hong Kong, Hong Kong, P.R.
[29].Pelletier, J.D., Cline, M., & DeLong, S.B. (2007). Desert pavement dynamics; numerical modeling and field-based calibration. Earth Surf. Process. Landforms, 32, 1913-1927.
[30].Penders, C.A. (2010). Determining mean grain-size in high gradient streams with autocorrelative digital image processing. Master of Science Thesis, Appalachian State University, Boone, North Carolina, United States.
[31].Rafi Sharif Abad, J., & Zhetatabian, Gh.R. (2014). Assessing the actual status of desertification of the Yazd plain, based on two criteria for water and climate, Desert Management, 3, 51-60. (in Farsi)
[32].Taghizadeh, R., Ghazali, A., Kalantari, S., & Rahimian, MH. (2016). Spatial distribution of soil salinity using auxiliary variables and hypercube sampling method in Meybod, Arid Biome, 6, 69-79. (in Farsi)
[33].Tazeh, M. Zhehtabian, Gh. R. Ahmadi, H. Nazari Samani, A. A., & Ehsani, A. H. (2015). Determination of the most important Granulometric Parameters of Desert Plain in Different Types of Dashtasar (Case Study: Khezr Abad). Quantitative Geomorphology Researches, 2, 43-31. (in Farsi)
[34].Zehtabian, G.R., Ahmadi, H., Samani Nazari, A.A., Ehsani, A.H., & Tazeh, M. (2017). Determinig the most important geomorphometric parameters in classification of desert plans using artificial networks and sensitivity analysis, Range and Watershed  Management, 70(1), 197-206.