Evaluation of oak decline in relation to the diversity of woody species, soil properties and physiographic factors in southern Zagros forests

Document Type : Research Paper

Authors

1 M.Sc. in Forestry, Department of Forestry, Faculty of Aghriculture, University of Ilam, Ilam, Iran

2 Associate professor, Department of Forestry, Faculty of Aghriculture, University of Ilam, Ilam, Iran

3 Asistant professor, Research Division of forests, Rangelands and Watershed, Ilam Agricultural and Natural Resources Research Center (AREEO), Ilam, Iran

10.29252/aridbiom.2024.21417.2006

Abstract

The study aimed to investigate the decline of oak in relation to the woody species diversity, soil characteristics and physiographic factors in Bankol region of Ilam province. This study was carried out in two aspects of the northern and eastern slopes and in three altitude classes (1340-1440, 1440-1540 and > 1540 m above sea level) with circular sample plots of 1000 m2. In the sample plots, the diversity of wood species and the dieback percentage of oak were determined. Soil samples were taken from the depth of 0 to 30 cm. The effect of topographic factors on soil properties, species diversity and dieback rate was investigated using two-way analysis of variance and comparing the means of Duncan's multi-range test. Principal Component Analysis (PCA) was used to investigate the relationship between diversity indices, soil characteristics and dieback intensity along the elevation classes in each aspect. The results showed that elevation and aspect have a significant effect on soil properties, woody species diversity and dieback intensity. Based on the results, the amount of organic matter was higher on the north aspect than on the east aspect. The highest amount of total nitrogen recorded in 1440-1540 m and > 1540 m on the northern aspect and the lowest amount was in 1340-1440 m in the eastern aspect. The amount of soil phosphorus was highest in the northern aspect and at 1440-1540 m. Shannon-Weiner and Simpson's diversity indices and the richness of woody species were higher in the northern aaspect and middle and high elevation classes than the low elevation class. The highest dieback intensity was observed at altitudes > 1540 m in both the northern (9.88%) and eastern (10.55%) aspects, and the lowest value was in the middle elevation on the northern and eastern aspects, and these situations should be prioritized for protection, restoration and silvicultural merasures related this phenomenon.

Keywords

Main Subjects


[1]. Amir Ahmadi, B., Zolfaghari, R., & Mirzaei, M. R. (2015). Relation between Dieback of Quercus brantii Lindl. Trees with Ecological and Sylvicultural Factors, (Study Area: Dena Protected Area). Ecology of Iranian Forests, 3(6), 19-27. [in Farsi]
[2]. Armenteras, D., Dávalos, L.M., Barreto, J.S., Miranda, A., Hernández-Moreno, A., Zamorano-Elgueta, C., González-Delgado, T.M., Meza-Elizalde, M.C., & Retana, J. (2021). Fire-induced loss of the world’s most biodiverse forests in Latin America, Science Advances, 7(33), eabd3357. doi: 10.1126/sciadv.abd3357
[3]. Atashgahi, Z., Ejtehadi, H., & Zare, H. (2015). Plant species diversity in relation to topography in the east of Dodangeh forests, Mazandaran province, Iran. Journal of Plant Research (Iranian Journal of Biology), 28(1), 1-11. [in Farsi]
[4]. Auclair, A. N. D., Heilman, W. E., & Brinkman, B. (2010). Predicting forest dieback in Maine, USA: a simple model based on soil frost and drought, Canadian journal of forest research, 40(4), 687-702. doi: 10.1139/X10-023
[5]. Azim Nejad, Z., Badehian, Z., Rezaei Nejad, A. & Bazot, S. (2021). Do soil properties and ecophysiological responses of oak (Quercus brantii Lindl.) correlate with the rate of dieback, Trees, 35(5), 1639-1650. doi: 10.1007/s00468-021-02142-7
[6]. Badano, E. I., Cavieres, L. A., Molina-Montenegro, M. A., & Quiroz, C. L. (2005). (2005). Slope aspect influences plant association pattern in the Mediterranean natural of central Chile, Journal of Arid Environments, 62(1), 93-108. doi: 10.1016/j.jaridenv.2004.10.012
[7]. Bayat, H., Sheklabadi, M., Moradhaseli, M., & Ebrahimi, E. (2017). Effects of slope aspect, grazing, and sampling position on the soil penetration resistance curve, Geoderma, 303, 150-164. doi: 10.1016/j.geoderma.2017.05.003
[8]. Bhatt, R. P. (2023). Achievement of SDGS globally in biodiversity conservation and reduction of greenhouse gas emissions by using green energy and maintaining forest cover. GSC Advanced Research and Reviews, 17(3), 1-21. doi: 10.30574/gscarr.2023.17.3.0421
[9]. Bouyoucos, G. J. (1962). Hydrometer method improved for making particle size analysis of soils, Agronomy Journal, 54, 464- 465. doi: 10.2134/agronj1962.00021962005400050028x
[10]. Chakraborty, T., Saha, S., Matzarakis, A., & Reif, A. (2017). Influence of multiple biotic and abiotic factors on the crown die-back of European beech trees at their drought limit. Flora, 229, 58-70. doi: 10.1016/j.flora.2017.02.012
[11]. Conforti, M., Longobucco, T., Scarciglia, F., Niceforo, G., Matteucci, G., & Buttafuoco, G. (2020). Interplay between soil formation and geomorphic processes along a soil catena in a Mediterranean mountain landscape: an integrated pedological and geophysical approach. Environmental Earth Sciences, 79, 1-16. doi: 10.1007/s12665-019-8802-2
[12]. Cui, W., & Zheng, X.-X. (2016). Spatial Heterogeneity in Tree Diversity and Forest Structure of Evergreen Broadleaf Forests in Southern China along an Altitudinal Gradient. Forests7(10), 216. doi: 10.3390/f7100216
[13]. Dallahi, Y., Boujraf, A., Meliho, M., & Orlando, C.A. (2023). Assessment of forest dieback on the Moroccan Central Plateau using spectral vegetation indices. Journal of Forestry Research, 34(3), 793-808. doi: 10.1007/s11676-022-01525-x
[14]. Denman, S., Brown, N., Kirk, S., Jeger, M., & Webber, J. (2014). A description of the symptoms of Acute Oak Decline in Britain and a comparative review on causes of similar disorders on oak in Europe. Forestry: An International Journal of Forest Research, 87(4), 535-551. doi: 10.1093/forestry/cpu010
[15]. Dezhem Khoi, M. (2014). The effect of some physiographic factors on tree and shrub diversity in Zardlan region of Ilam province [MSc dissertation, Islamic Azad University of Ilam branch]. [in Farsi]
[16]. Dong, J., Zhou, K., Jiang, P., Wu, J., & Fu, W. (2021). Revealing horizontal and vertical variation of soil organic carbon, soil total nitrogen and C:N ratio in subtropical forests of southeastern China. Journal of Environmental Management, 289, 112483. doi: 10.1016/j.jenvman.2021.11248
[17]. Fan, B., Tao, W., Qin, G., Hopkins, I., Zhang, Y., Wang, Q., Lin, H., & Guo, L. (2020). Soil micro-climate variation in relation to slope aspect, position, and curvature in a forested catchment. Agricultural and Forest Meteorology, 290, 107999. doi: 10.1016/j.agrformet.2020.107999
[18]. Farokhzadeh, B., Ghasemi, B., Ataeian, B., & Akhzari, D. (2023). Effective Physiological parameters and some physio-chemical parameters on soil organic carbon storage in Gonbad rangelands, Journal of Rangeland, 16(4), 846-859. [in Farsi]
[19]. Gao, Y., Skutsch, M., Paneque-Gálvez, J., & Ghilardi, A. (2020). Remote sensing of forest degradation: a review. Environmental Research Letters, 15(10), 103001. doi: 10.1088/1748-9326/abaad7
[20]. Ghadirian, O., Hemami, M. R., Soffianian, A., Pourmanaphi, S., Malekian, M., & Tarkesh, M. (2018). Probabilistic prediction of forest decline in Lorestan province using a combined modeling approach. Iranian Journal of Forest and Range Protection Research, 15(2), 131-146. [in Farsi]
[21]. Gheitury, M., Heshmati, M., Noroozi, A., Ahmadi, M., & Parvizi, Y. (2020). Monitoring mortality in a semiarid forest under the influence of prolonged drought in Zagros region. International Journal of Environmental Science and Technology, 17(11), 4589-4600. doi: 10.1007/s13762-020-02638-8
[22]. Hamzehpour, M., Kia-daliri, H., & Bordbar. K. (2011). Preliminary study of manna oak (Quercus brantii Lindl.) tree decline in Dashte-Barm of Kazeroon, Fars province, Iranian Journal of Forest and Poplar Research, 19(2), 352-363. doi: 10.22092/ijfpr.2011.107578 [in Farsi]
[23]. Heydari, M., Cheraghi, J., Omidipour, R., Mirab-balou, M., & Pothier, D. (2021). Beta diversity of plant community and soil mesofauna along an elevational gradient in a mountainous semi-arid oak forest. Community Ecology, 22, 165-176. doi: 10.1007/s42974-021-00046-7
[24]. Hosseini, A. (2014). Effects of some of Persian oak tree and stand characteristics on crown dieback rate in oak forests of medium Zagros. Journal of Zagros Forests Researches, 1(1), 37-50. [in Farsi]
[25]. Hosseini, A., Hosseini, S.M., & Linares, J.C. (2017). Site factors and stand conditions associated with Persian oak decline in zagros mountain forests. Forest systems, 26(3), e014. doi: 10.5424/fs/2017263-11298 [in Farsi]
[26]. Hosseini, A., Matinizadeh, M., Pourhashemi, M., & Asgari, S. (2021). Effect of slope aspect and crown dieback intensity on leaf and soil nutrient status in Persian oak stands, Quercus brantii Lindl. (Case study, Melah-Siah forests, Ilam province). Iranian Journal of Forest and Range Protection Research, 19(2), 354-367. doi: 10.22092/ijfrpr.2021.354903.1494 [in Farsi]
[27]. Hosseinzadeh, J., & Pourhashemi, M. (2015). An investigation on the relationship between crown indices and the severity of oak forests decline in Ilam. Iranian Journal of Forest, 7(1), 55-66. [in Farsi]
[28]. Jafari Haghighi, M. (2003). Soil analysis methods: sampling and important physical and chemical analyzes with emphasis on theoretical and practical principles, Nedaye Zoha press. [in Farsi]
[29]. Jafareiyan, N., Mirzaei, J., Moradi, M., & Heydari, M. (2017). Environmental characteristics and ordination of woody plant species and their relation with environmental factors in Ilam forest. Journal of Wood and Forest Science and Technology, 24(3), 81-94. doi: 10.22069/jwfst.2017.13123.1673 [in Farsi]
[30]. Jiang, P., & Thelen, K. D. (2004). Effect of soil and topographic properties on crop yield in a North-central corn-soybean cropping system, Agronomy Journal, 96(1), 252-258. doi: 10.2134/agronj2004.0252
[31]. Jucker, T., Bongalov, B., Burslem, D.F., Nilus, R., Dalponte, M., Lewis, S.L., Phillips, O.L., Qie, L., & Coomes, D.A. (2018). Topography shapes the structure, composition and function of tropical forest landscapes, Ecology letters, 21(7), 989-1000. doi: 10.1111/ele.12964
[32]. Kalra, Y. P., & Maynard, D. G. (1991). Methods Manual for Forest Soil and Plant Analysis, Information Report NOR-X-319, Forestry Canada.
[33]. Karami, J., Kavosi, M., & Babanezhad, M. (2015). Assessing the relationship between some environmental variables and spread of charcoal disease on chestnut-leaved oak (Quercus castaneifolia CA Mey). Iranian Journal of Forest and Range Protection Research, 13(1), 34-45. doi: 10.22092/ijfrpr.2015.102391 [in Farsi]
[34]. Karami, M., Sheykholeslami, A., Heydari, M., Nimvari, M.E., Omidipour, R., & Prevosto, B. (2022). Taxonomic and structural diversity indices predict soil carbon storage better than functional diversity indices along a dieback intensity gradient in semi-arid oak forests. Trees, 36, 537–551. doi: 10.1007/s00468-021-02227-3
[35]. Lakkana, T., Ashton, M.S., Hooper, E.R., Perera, A., & Ediriweera, S. (2022). Tropical montane forest in South Asia: Composition, structure, and dieback in relation to soils and topography, Ecosphere, 13(5), e4049. doi: 10.1002/ecs2.4049
[36]. Lal, R. (2004). Soil carbon sequestration to mitigate climate change, Geoderma, 123(1-2), 1-22. doi: 10.1016/j.geoderma.2004.01.032
[37]. Magurran, A. E., & McGill, B. J. (2011). Biological Diversity: Frontiers in Measurement and Assessment, Oxford University Press.
[38]. Mazzei, A., Bonacci, T., Horák, J., & Brandmayr, P. (2018). The role of topography, stand and habitat features for management and biodiversity of a prominent forest hotspot of the Mediterranean Basin: Saproxylic beetles as possible indicators, Forest Ecology and Management, 410, 66-75. doi: 10.1016/j.foreco.2017.12.039
[39]. Mirhashemi, H., Heydari, M., Karami, O., Ahmadi, K., & Mosavi, A. (2023). Modeling Climate Change Effects on the Distribution of Oak Forests with Machine Learning. Forests, 14(3), 469. doi: 10.3390/f14030469
[40]. Mirjalili, A., Zarekia, S., & Jafarian Jeloudar, Z. (2021). Effect of topographic on species richness and diversity in desert and arid rangelands (Case study: Tang_e Laybid rangelands of Yazd). Management of Natural Ecosystems, 1(1), 26-36. doi: 10.22034/emj.2021.248918 [in Farsi]
[41]. Mirzaei, J., Heydari, M., & Prévosto, B. (2017). Effects of vegetation patterns and environmental factors on woody regeneration in semi-arid oak-dominated forests of western Iran, Journal of Arid Land, 9, 368-378. doi: 10.1007/s40333-017-0013-7
[42]. Oliver, P. A. T. (2015). Patterns of shrub diversity and tree regeneration across topographic and stand-structural gradients in a Mediterranean forest, Forest systems, 24(1), e-011. doi: 10.5424/fs/2015241-05887.
[43]. Olsen, S. R., Cole, C. V., Watanabe, F. S., & Dean, L. A. (1954). Estimation of available phosphorus in soils by extraction with sodium bicarbonate, Circular (USDA), 939, 1-19.
[44]. Pavlov, I. N. (2015). Biotic and abiotic factors as causes of coniferous forests dieback in Siberia and Far East. Contemporary problems of ecology, 8, 440-456. doi: 10.1134/S1995425515040125
[45]. Pourbabaei, H., & Haghgooy, T. (2013). Effect of physiographical factors on tree species diversity (case study: Kandelat Forest Park). Iranian Journal of Forest and Poplar Research, 21(2), 243-255. doi: 10.22092/ijfpr.2013.3855 [in Farsi]
[46]. Salehi, A., Zarinkafsh, M., Zahedi Amiri, G., & Marvi Mohajer, R. (2005). A Study of Soil Physical and Chemical Properties in Relation to Tree Ecological Groups in Nam-Khaneh District Of Kheirood-Kenar Forest. Iranian Journal of Natural Resources, 58(3), 567-578. [in Farsi]
[47]. Scott, P.M., Shearer, B.L., Barber, P.A. & Hardy, G.S.J. (2013). Relationships between the crown health, fine root and ectomycorrhizae density of declining Eucalyptus gomphocephala. Australasian Plant Pathology, 42(2), 121-131. doi: 10.1007/s13313-012-0152-4
[48]. Sharma, N., & Kala, C. P. (2022). Patterns in plant species diversity along the altitudinal gradient in Dhauladhar mountain range of the North-West Himalaya in India. Trees, Forests and People, 7, 100196. doi: 10.1016/j.tfp.2022.100196
[49]. Shahooei, S. (Trans.) (2006). The Nature and Properties of Soils, 13th Edition (R. R. Weil & N. C. Brady), (Original work published 2002). University of Kurdistan Press. [in Farsi]
[50]. Shi, W. Y., Du, S., Morina, J. C., Guan, J. H., Wang, K. B., Ma, M. G., Yamanaka, N., & Tateno, R. (2017). Physical and biogeochemical controls on soil respiration along a topographical gradient in a semiarid forest. Agricultural and Forest Meteorology, 247, 1-11. doi: 10.1016/j.agrformet.2017.07.006
[51]. Shiravand, H., & Hosseini, S. A. (2020). A new evaluation of the influence of climate change on Zagros oak forest dieback in Iran. Theoretical and Applied Climatology, 141, 685-697. doi: 10.1007/s00704-020-03226-z
[52]. Sire, L., Yáñez, P.S., Wang, C., Bézier, A., Courtial, B., Cours, J., Fontaneto, D., Larrieu, L., Bouget, C., Thorn, S. & Müller, J. (2021). Climate-induced forest dieback drives compositional change in insect communities that is concentrated amongst rare species, bioRxiv. doi: 10.1101/2021.04.21.440751
[53]. Spracklen, D. V., & Coelho, C. A. S. (2023). Modeling early warning signs of possible Amazon Forest dieback. Science Advances, 9(40). doi: 10.1126/sciadv.adk5670
[54]. Stephenson, N. L. (1990). Climatic control of vegetation distribution: The role of water balance. American Naturalist, 135, 649-670. doi: 10.1086/285067
[55]. Taghipour, F., Emadi, S. M., Qajar Spanalo, M., & Danesh, M. (2017, November). Investigating the effect of altitude changes on the properties of paddy soils in the east of Mazandaran province, The 18th National Rice Conference. Sari 6 p. 28 and 29, [in Farsi]
[56]. Taheri Abkenar, K., Sedighi, F., & mahmoudi, S. (2014). Study of carpinus betulus dieback distribution using topographic factors. Environmental Resources Research, 1(2), 181-189. doi: 10.22069/ijerr.2014.1693 [in Farsi]
[57]. Tiwari, O. P., Sharma, C. M., & Rana, Y. S. (2020). Influence of altitude and slope-aspect on diversity, regeneration and structure of some moist temperate forests of Garhwal Himalaya. Tropical Ecology, 61, 278-289. doi: 10.1007/s42965-020-00088-4
[58]. Touhami, I., Chirino, E., Aouinti, H., El Khorchani, A., Elaieb, M.T., Khaldi, A., & Nasr, Z. (2020). Decline and dieback of cork oak (Quercus suber L.) forests in the Mediterranean basin: A case study of Kroumirie, Northwest Tunisia. Journal of Forestry Research, 31(2), 1461-1477. doi: 10.1007/s11676-019-00974-1
[59]. Tsui, C. C., Chen, Z. S., & Hsieh, C. F. (2004). Relationships between soil properties and slope position in a lowland rain forest of southern Taiwan. Geoderma, 123(1-2), 131-142. doi: 10.1016/j.geoderma.2004.01.031
[60]. Valtera, M., Šamonil, P., Svoboda, M., & Janda, P. (2015). Effects of topography and forest stand dynamics on soil morphology in three natural Picea abies mountain forests. Plant and Soil, 392, 57-69. doi: 10.1007/s11104-015-2442-4
[61]. Walkley, A., & Black, I. A. (1934). An Examination of the Degetiareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Science, 37, 29-38. dx.doi: 10.1097/00010694-193401000-00003
[62]. Woldu, G., Solomon, N., Hishe, H., Gebrewahid H., Gebremedhin, M. A., & Birhane, E. (2020). Topographic variables to determine the diversity of woody species in the exclosure of Northern Ethiopia. Heliyon, 6(1), e03121. doi: 10.1016/j.heliyon.2019.e03121
[63]. Zand, M., Miri, M., Razie, T., & Norouzi, A. A. (2021). Investigating the effects of meteorological drought on canopy level dieback of oak forests of Lorestan Province, western Iran. Journal of Climate Research, 12(46), 1-16 [in Farsi]
[64]. Zhang, J., Fu, B., Stafford-Smith, M., Wang, S., & Zhao, W. (2021). Improve forest restoration initiatives to meet Sustainable Development Goal 15. Nature Ecology & Evolution, 5(1), 10-13. doi: 10.1038/s41559-020-01332-9