Prediction of climate change effects on wild sheep (Ovis orientalis) habitat suitability using ensemble modeling in Markazi province

Document Type : Research Paper

Author

Assistant Professor, Department of Environmental Sciences and Engineering, Faculty of Agriculture and Environment, Arak University, Arak, Iran

10.29252/aridbiom.2021.2005

Abstract

Predicting the habitat suitability of wildlife in response to climate change is essential for their conservation and management. Wild sheepis a wildlife species native to Iran. Therefore, this study aimed at predicting the effect of climate change on wild sheep (Ovis orientalis) habitat suitability using ensemble modeling in Markazi Province. In this regard, Five modeling approaches suchas Surface Range Envelop (SRE), Multiple Adaptive Regression Splines (MARS), Random Forest (RF), Classification Tree Analysis (CTA), Flexible Discriminant Analysis (FDA) were used to determine relationships between the occurrence of species and environmental factors under the ensemble framework by using Biomod2 and R software. R results showed that AUC values greater than 0.9 and functioning of all models been excellent. The mean temperature annual range and Annual precipitation had the most important role for habitat suitability of this species and 113.1% changes in O. orientalis habitat suitability was justified. R results of the model showed that 1211316.19 ha, (41.55%) of in Markazi province for the O. orientalis have had high habitat suitability. Under RCP2.6 and RCP8.5 climate scenario O. orientalis might lose respectively 50.30% and 73.42% of its climatically suitable habitats due to climate change factors, by 2050, while in a number of areas 4.1% and 12.1%, the current unsuitable habitats may be converted to suitable. More habitat reduction in protected areas related to Varsan, Bazarjan, Mouteh, Jasb and Haftad-Gholeh areas. The lowest habitat reduction in the Razeghan and Chal-khaton areas. The results of this study can be used in planning, conservation and rehabilitation of O. orientalis and protected areas managemen.

Keywords


[1]. Allouche, O., Tsoar A., Kadmon, R. (2006). Assessing the accuracy of species distributionmodels: prevalence, kappa and the true skill statistic (TSS), Journal of Applied Ecology, (43), 1223–1232.
[2]. Anderson, R.P., Lew, D., Townsend Peterson, A., (2003). Evaluating predictive models of species distributions: criteria for selecting optimal models. Ecological Modelling, 244-292.
[3]. Araújo, M.B., Alagador, D., Cabeza, M., Nogués-Bravo, D., Thuiller, W. (2011). Climate change threatens European conservation areas. Ecology letters, 14: 484–492.
[4]. Ashrafzadeh, M.R., Naghipour, A.A., Haidarian, M., Khorozyan, I. (2019a). Modeling the response of an endangered flagship predator to climate change in Iran. Mammal Research, (64): 1-13.
[5]. Bellard, C., Bertelsmeier, C., Leadley, P., Thuiller, W., Courchamp, F. (2012). Impacts of climate change on the future of biodiversity. Ecology Letters, 15(4): 365-377.
[6]. Chen, I.C., Hill, J.K., Ohlemüller, R., Roy, D.B., Thomas, C.D. (2011). Rapid range shifts of species associated with high levels of climate warming. Science 333(6045): 1024-1026.
[7]. Cheng, L., Lek, S., Lek-Ang, S., Li, Z. (2012). Predicting fish assemblages and diversity in shallow lakes in the Yangtze River basin. Limnologica-Ecology and Management of Inland Waters, 42(2): 127-136.
[8]. Dawson, T.P., Jackson, S.T., House, J.I., Prentice, I.C., Mace, G.M. (2011). Beyond predictions: biodiversity conservation in a changing climate. Science, 332(6025): 53-58.
[9]. DOE Markazi. (2010). Natural Features Atlas of Markazi Province. Publisher: NAQSH-E MANA by Order of Department of Environment Markazi. (in Farsi).
[10]. DOE Markazi. (2017). Report of census on the population of mammals in the Haftad-Gholleh protected area. http://markazi.doe.ir/Portal/. (in Farsi).
[11]. Granados, A., Brodie, J.F., 2016. Persistence of tropical Asian ungulates in the face of hunting and climate change. In: Sankaran, M., Ahrestani, F. (Eds.), the Ecology of Large Herbivores in South and Southeast Asia. Springer-Verlag, Berlin, Germany, 223-235.
[12]. Grenouillet, G., Buisson, L., Casajus, N., Lek, S. (2011). Ensemble modelling of species distribution: the effects of geographical and environmental ranges. Ecography, 34(1), 9-17.
[13]. Haynes, M.A., Kung, K.S., Brandt, J.S., Yongping, Y., Waller, D.M.(2014). Accelerated climate change and its potential impact on yak herding livelihoods in the eastern Tibetan plateau. Climatic Change, 123: 147-160.
[14]. Hijmans, R., Cameron, S., Parra, J., Jones, P.J. (2004). The worldclim interpolated global terrestrial climate surfaces. Version1.3.
[15]. Hole, D.G., Willis, S.G., Pain, D.J., Fishpool, L.D., Butchart, S.H.M., Collingham, Y.C., Huntley, B. (2009). Projected impacts of climate change on a continent- wide protected area network. Ecology Letters, 12: 420-431.
[16]. Hosseini, S.M., Fazilati, M., Moulavi, F., Foruzanfar, M., Hajian, M., Abedi, P. (2009). Reproductive potential of domestic Ovis Aries for preservation of threatened Ovis orientalis isphahanica: In vitro and in vivo studies. European Journal of Wildlife Research, (55), 239-246.
[17]. Intergovernmental Panel on Climate Change, (2014). Climate Change 2014–Impacts, Adaptation and Vulnerability: Regional Aspects. Cambridge University Press, 650 pp.
[18]. Jowkar, H., Ostrowski, S., Tahbaz, M., Zahler, P. (2016). The conservation of biodiversity in Iran: threats, challenges and hopes. Iran Stud, 49, 1065–1077.
[19]. Kafash, A., Kaboli, M., Koehler, G. (2014). Predicting the impacts of climate change on the Mesopotamian Spiny-tailed Lizard (Saara loricata): Using maximum entropy algorithm and Bioclim. Journal of Animal Biology, 7(1), 75-82
[20]. Kafash, A., Kaboli, M., Koehler, G., Yousefi, M., Asadi, A. (2016). Ensemble distribution modeling of the Mesopotamian spiny-tailed lizard, Saara loricata (Blanford, 1874), in Iran: an insight into the impact of climate change.Turkish Journal of Zoology, 40(2), 262-271.
[21]. Karami, M., Ghadirian, T., Faizolahi, K. (2012). The atlas of mammals of Iran. Department of Environment, Tehran.
[22]. Kumar, S., Stohlgren, T.J., (2009). Maxent modeling for predicting suitable habitat for threatened and endangered tree Canacomyrica monticola in New Caledonia. Journal of Ecology and Natural Environment, 4(1), 31-33.
[23]. Lamsal, P., Kumar, L., Aryal, A., Atreya, K., 2018. Future climate and habitat distribution of Himalayan Musk Deer (Moschus chrysogaster). Ecological Informatics, 44, 101-108.
[24]. Luo, Z., Jiang, Z., Tang, S. (2015). Impacts of climate change on distributions and diversity of ungulates on the Tibetan Plateau. Ecological Applications, 25(1), 24-38.
[25]. Mack, E.L., Firbank, L.G., Bellary, P.E., Hinsley, S.A., Veitch, N. (1997). The comparison of remotely sensed and ground-based habitat area data using species-area models. Applid Ecology, 91: 4222-4223.
[26]. Morovati, M., Kaboli, M., Panahandeh, M., Sarbaz, M., Ahmadian, S. (2017). Modeling the Habitat suitability of Cheetah (Acinonyx jubatus venaticus) under the influence of climate change in Iran using software MAXENT. Journal of Animal Environment, 9(1): 13-20.
[27]. Pereira, H.M., Leadley, P.W., Proenca, V., Alkemade, R., Scharlemann, J.P.W., Fernandez Manjarres, J.F. (2010). Scenarios for global biodiversity in the 24st century. Science, 991: 4132-4214.
[28]. Pettorelli, N., Pelletier, F., von Hardenberg, A., Festa-Bianchet, M., Coté, S.D., 2007. Early onset of vegetation growth vs. rapid green- up: Impacts on juvenile mountain ungulates. Ecology, 88: 381-390.
[29]. Pressey, R.L., Cabeza, M., Watts, M.E., Cowling, R.M., Wilson, K.A. (2007). Conservation planning in a changing world. Trends in Ecology & Evolution, 22(11), 583-592
[30]. R Development Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna.
[31]. Salas, E.A.L., Valdez, R., Michel, S., Boykin, K.G. (2018). Habitat assessment of Marco Polo sheep (Ovis ammon polii) in Eastern Tajikistan: Modeling the effects of climate change. Ecology and evolution 8(10), 5124-5138.
[32]. Sexton, J.P., McIntyre, P.J., Angert, A.L., Rice, K.J., 2009. Evolution and ecology of species range limits. Annual Review of Ecology, Evolution, and Systematics, 40, 415-436.
[33]. Sinclair, S., White, M., Newell, G. (2010). How useful are species distribution models for managing biodiversity under future climates? Ecology and Society, 15(1), 8 [online].
[34]. Thuiller, W., Georges, D., Engler, R., Breiner, F., Georges, M.D., Thuiller, C.W. (2016). Package ‘biomod2’. https://cran.r project.org/package=biomod2
[35]. White, K.S., Gregovich, D.P., Levi, T. (2018). Projecting the future of an alpine ungulate under climate change scenarios. Global change biology, 24(3): 1136-1149.
[36]. Williams, S.E., Bolitho, E.E., Fox, S. (2003). Climate change in Australian tropical rainforests: an impending environmental catastrophe. Proc. R. Soc. Lond, 221: 4332-4332.
[37]. Yousefi, M., Ahmadi, M., Nourani, E., Rezaei, A., Kafash, A., Khani, A., Sehhatisabet, M.E., Adibi, M.A., Goudarzi, F., Kaboli, M. (2017). Habitat suitability and impacts of climate change on the distribution of wintering population of Asian Houbara Bustard Chlamydotis macqueenii in Iran. Bird Conservation International, 27(2): 294-304.
[38]. Zhang, M.G., Zhou, Z.K., Chen, W.Y., Slik, J.F., Cannon, C.H., & Raes, N. (2012). Using species distribution modeling to improve conservation and land use planning of Yunnan, China. Biological Conservation, 153: 257–264.
[39]. Ziaie, H. (2008). A Fied Guide to the Mammals of Iran. Tehran, Publishers: Wildlife Reconnaissance Center, 419p.