اثربخشی جنگل‌‌های دست‌کاشت مناطق بیابانی از جنبه خدمت اکوسیستمی ترسیب کربن (در منطقه سه‌قلعه – سرایان، خراسان جنوبی)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 بخش تحقیقات بیابان، مؤسسه تحقیقات جنگل‌ها و مراتع کشور، سازمان تحقیقات، آموزش و ترویج کشاورزی، تهران، ایران

2 پژوهشگر بخش بیابان، موسسه تحقیقات جنگل ها و مراتع کشور، سازمان تحقیقات، آموزش و ترویج کشاورزی، تهران، ایران.

3 دانش آموخته دکتری علوم مرتع دانشگاه تهران.ایران

4 کارشناس ارشد بیابان زدایی، اداره کل منابع طبیعی و آبخیزداری خراسان جنوبی.ایران

10.29252/aridbiom.2025.22868.2044

چکیده

امروزه با آشکار شدن اثرات منفی تغییرات‌ اقلیمی در سطح جهان، توجه ویژه­ای به جنگل­های دست­کاشت بیابانی، به عنوان یک منبع و ظرفیت بالقوه ناشناخته برای ترسیب کربن از سوی دانشمندان صورت گرفته است. تحقیق حاضر با این هدف در منطقه سه‌قلعه – سرایان در استان خراسان جنوبی انجام گرفت. در گام نخست روند احیاء و توسعه جنگل­های دست­کاشت منطقه  مورد مطالعه با تصاویر سنجش از دوری ماهواره لندست 5 و 8 با وضوح 30 متر در بازه زمانی 1369 تا 1402 با استفاده از شاخص اصلاح شده پوشش‌گیاهی تعدیل‌شده با خاک MSAVI بررسی گردید. در ادامه جهت ارزیابی میدانی، تیپ­های پوشش‌گیاهی و منطقه معرف هر یک مشخص و تعداد 5 ترانسکت 300 متری به شکل تصادفی – سیستماتیک مستقر شده و با اندازه­گیری 5 پلات 4 مترمربعی در طول هر ترانسکت، میزان تراکم محاسبه گردید. از آنجا که تنها گونه غالب محدوده مورد مطالعه سیاه‌تاغ بود، برای تعیین دقیق وزن زی­توده تعداد سه پایه در هر تیپ، در اندازه­های مختلف کف­بر ­شده و اندام هوایی و زیرزمینی کاملا برداشت و توزین گردید. برای تعیین کربن خاک به روش والکی و بلاک، در هر تیپ،‌ پنج نمونه خاک سطحی از عمق 15-5 سانتی­متر برداشت شد. در نهایت اندازه­گیری میزان کربن گیاه به روش احتراق انجام گرفت. نتایج بررسی تغییرات مکانی و زمانی شاخص MSAVI نشان داد که مقدار آن از 057/0 در سال 1369 به 22/0 در سال 1402 افزایش یافته و این افزایش از شمال و شمال‌غرب به سمت شرق و جنوب‌شرق محدوده بوده است. میانگین تعداد پایه درختچه تاغ در تیپ­های مختلف، 308 پایه در هکتار و میزان کل ترسیب کربن جنگل‌های دست­کاشت منطقه سه­قلعه معادل 5/1063838 تن برآورد گردید که این مقدار برای هر هکتار و کل محدود موردمطالعه در بخش گیاه به‌ترتیب 75/106 کیلوگرم و 11346 تن و در بخش خاک به‌ترتیب 7/1349 کیلوگرم و 5/1052492 تن بدست آمد. به‌طور کلی آنچه از ظرفیت مناطق خشک و بیابانی جهت ترسیب کربن مطرح است به سبب وسعت این اراضی است چرا که به شکل طبیعی مقدار کربن آلی خاک مناطق خشک کم است. با این‌حال جنگل­های دست­کاشت مناطق بیابانی نقش شگرفی در ترسیب کربن آلی ایفا می­کنند.

کلیدواژه‌ها

موضوعات


[1]. Andre, P., Boneva, T., Chopra, F., & Falk, A. (2024). Globally representative evidence on the actual and perceived support for climate action. Nature Climate Change14(3),253-259. https://doi.org/10.1038/s41558-024-01925-3
[2]. Luske, Boki and van der Kamp , Joris (2009) Carbon sequestration potential of reclaimed desert soils in Egypt. Louis Bolk Instituut / Soil and more. 35.
[3]. Bagherifam, S. and Shayesteh Zeraati, H. (2015). Capability of haloxylon in carbon sequestration in sand dunes of Sabzevar. Journal of Soil Management and Sustainable Production, 5(1), 187-200.
[4]. Baghestani Meibodi, N. (2019). Holxylon and haloxylon plantation. Research institute of forests and rangelands. 300.
[5]. Bastin, J. F., Finegold, Y., Garcia, C., Mollicone, D., Rezende, M., Routh, D., and Crowther, T. W. (2019). The global tree restoration potential. Science. 365,76-79(2019) .https://doi.org/10.1126/science.aax0848
[6]. Cook-Patton, S. C., Drever, C. R., Griscom, B. W., Hamrick, K., Hardman, H., Kroeger, T., ... & Ellis, P. W. (2021). Protect, manage and then restore lands for climate mitigation. Nature Climate Change, 11(12), 1027-1034.
[7]. Darvand, S., Khosravi, H., Eskandari Damaneh, H., & Eskandari Damaneh, H. (2021). Investigating the trend of NDVI changes derived from MODIS sensor imagery (Case study: Isfahan Province). Degradation and Rehabilitation of Natural Lands, 1(2), 69-79.[in Farsi]
[8]. Eskandari Shahraki, A. , Kiani, B. and Iranmanesh, Y. (2016). Effects of different landuse types on soil organic carbon storage. Iranian Journal of Forest and Poplar Research, 24(3), 389-379. doi: 10.22092/ijfpr.2016.107354.
[9]. Niu, D., Chen, H., Jiang, S., Liu, L., Zhang, H., & Fu, H. (2013). Carbon Sequestration in Relation to Shrub Size in the Desert Ecosystem.
[10]. Eskandari Damaneh, H., Eskandari Damaneh, H., Khosravi, H., Gilevari, A., & Adeli Sardooei, M. (2021). A survey on the effect of drought on environmental indices derived from the MODIS data over the 2001-2019 period (Case study: Rangelands of Isfahan province). Rangeland15(3), 460-476.[in Farsi]
[11]. Friedlingstein, P., O'sullivan, M., Jones, M. W., Andrew, R. M., Gregor, L., Hauck, J., ... & Zheng, B. (2022). Global carbon budget 2022. Earth System Science Data14(11), 4811-4900. https://doi.org/10.5194/essd-14-4811-2022.
[12]. Ghasemi Arian, Y. )2012(. Economic valuation of ecosystem goods and services of projects to combat desertification in South Khorasan Province, Final report of the completed project, National Forest and Rangeland Research Institute, Agricultural Research, Education and Extension Organization.[in Farsi]
[13]. Ghasemi Arian, Y., and  Yari, R. (2022). The role, importance and economic value of vegetation in controlling shifting sand and dust control, Chehar Derakht publication. [in Farsi]
[14]. Ghasemi Arian, Y., Khaksarian, F., Sayedakhalaghi, S., J., Abbasi, H., R., and Farajollahi, A. )2012(. Identifying the socio-economic dimensions of vegetation development projects in desert areas in the Se-Qaleh Sarayan region. 5th National Conference on Wind Erosion and Dust Storms, Yazd University.[in Farsi]
[15]. Ghasemi Aryan, Y., Eskandari Damaneh, H., Haghani, G., Mohammadi Roudbari, M. , Jafarian, V. , Eskandari Damaneh, H. , Hajibaglou, A. and Ziaee, N. (2024). Investigating the trend and determining the characteristics of critical wind and dust erosion hotspots in Sarakhs County. Journal of Arid Biome14(2), 61-74. doi: 10.29252/aridbiom.2025.22155.2028.
[16]. Hemmati, N. , Kiani, B. and Mosleh Arani, A. (2018). Using allometric equations for determining the biomass of saxaul (Halloxylon ammodenderon C.A.May). Journal of Arid Biome, 8(1), 37-47. doi: 10.29252/aridbiom.8.1.37.
[17]. Ghasemi Aryan, Y. )2016(. Evaluation and comparison of ecological based and socio-ecological based approaches in natural resources management both economically and ecologically (case study: combating desertification project and international carbon sequestration project in Sarbisheh plain, Khorasan povince). Ph.D. thesis in combating desertification. University of Tehran.[in Farsi]
[18]. Guo, L. B., & Gifford, R. M. (2002). Soil carbon stocks and land use change: a meta analysis. Global change biology, 8(4), 345-360..
[19]. Javadi, S., Ranjbar Fordoie, A., Khosravi, H. and Eskandari Damaneh, H. (2023). Investigating the effects of drought on the water use efficiency in different climates and land uses (Case study: Tehran province). Journal of Arid Biome13(2), 1-15. doi: 10.29252/aridbiom.2024.20742.1965. [in Farsi]
[20]. Jia Xiaohong, L., Ye Jingyun, F., Bao Fang, X., X., and  Wu, B.(2023) .Estimating carbon storage of desert ecosystems in China, International Journal of Digital Earth, 16:2, 4113-4125, DOI: 10.1080/17538947.2023.2263415.
[21]. Kerr, R.A. )2007(. Scientists tell policy makers we’re all warming the world. Science. 315:754-757. https://www.science.org/doi/abs/10.1126/science.315.5813.754
[22]. Li, L., Zayiti, A., & He, X. (2023). Evaluating the stand structure, carbon sequestration, oxygen release function, and carbon sink value of three artificial shrubs alongside the tarim desert highway. Forests14(11), 2137. https:// doi.org/10.3390/f14112137.
[23]. Liu, H., Wang, H., Teng, Y., Zhan, J., Wang, C., Liu, W., ... & He, Y. (2024). Controlling desertification brings positive socioeconomic benefits beyond regional environmental improvement: Evidence from China's Gonghe Basin. Journal of Environmental Management, 354, 120395.‏https://doi.org/10.1016/j.jenvman.2024.120395
[24]. Luske, Boki and van der Kamp , Joris (2009) Carbon sequestration potential of reclaimed desert soils in Egypt. Louis Bolk Instituut / Soil and more 
[25]. Luyssaert, S., Inglima, I., Jung, M., Richardson, A. D., Reichstein, M., Papale, D., ... & Janssens, I. A. (2007). CO2 balance of boreal, temperate, and tropical forests derived from a global database. Global change biology, 13(12), 2509-2537. https://doi.org/10.1111/j.1365-2486.2007.01439.x
[26]. Natural Resources and Watershed Management Organization. (2018). Update plan for the hot spots of wind erosion in Iran Desert affair bureau, natural resources and watershed organization. [in Farsi]
[27]. Perez-Quezada, J. F., Delpiano, C. A., Snyder, K. A., Johnson, D. A., & Franck, N. (2011). Carbon pools in an arid shrubland in Chile under natural and afforested conditions. Journal of Arid Environments, 75(1), 29-37.https://doi.org/10.1016/j.jaridenv.2010.08.003
[28]. Qi, J., Chehbouni, A., Huete, A. R., Kerr, Y. H., and  Sorooshian, S. (1994). A modified soil adjusted vegetation index. Remote Sensing of Environment, 48(2), 119-126. doi: 10.1016/0034-4257(94)90134-1.
[29]. Ma, Q., Wang, X., Chen, F., Wei, L., Zhang, D., & Jin, H. (2021). Carbon sequestration of sand-fixing plantation of Haloxylon ammodendron in Shiyang River Basin: storage, rate and potential. Global ecology and conservation, 28, e01607, https://doi.org/10.1016/j.gecco.2021.e01607.
[30]. Raihan, A. (2023). Toward sustainable and green development in Chile: dynamic influences of carbon emission reduction variables. Innovation and Green Development, 2(2), 100038.. https://doi.org/10.1016/j.igd.2023.100038.
[31]. Salajegheh, S., Eskandari Damaneh, H., & Eskandari Damaneh, H. (2024). Examining the Spatial and Temporal Relationships among Aerosol Optical Depth, Soil Moisture, and Wind Speed from 2000 to 2024,(Case Study: Western Iran). Desert, 29(2), 314-326.https://doi.org/10.22059/jdesert.2024.100917
[32]. Savari, M., Damaneh, H. E., & Damaneh, H. E. (2025). Discover the determining factors of the use of mangrove forests conservation behaviors. Journal for Nature Conservation, 83, 126768. https://doi.org/10.1016/j.jnc.2024.126768
[33]. Schade, J. D., Sponseller, R., Collins, S. L., & Stiles, A. (2003). The influence of Prosopis canopies on understorey vegetation: effects of landscape position. Journal of Vegetation Science, 14(5), 743-750.  https://doi.org/10.1111/j.1654-1103.2003.tb02206.x
[34]. Lozano-Baez, S. E., Boeni, A. F., Valderrama, P. D., & Rodrigues, R. R. (2024). Attention needed in forest carbon projects: An analysis of initiatives in Colombia. Forest Ecology and Management, 574, 122354 ,https://doi.org/10.1016/j.foreco.2024.122354.
[35]. Su, Y. Z., Wang, X. F., Yang, R., & Lee, J. (2010). Effects of sandy desertified land rehabilitation on soil carbon sequestration and aggregation in an arid region in China. Journal of Environmental Management, 91(11), 2109-2116.https://doi.org/10.1016/j.jenvman.2009.12.014
[36]. Walker, W. S., Gorelik, S. R., Cook-Patton, S. C., Baccini, A., Farina, M. K., Solvik, K. K., ... & Griscom, B. W. (2022). The global potential for increased storage of carbon on land. Proceedings of the National Academy of Sciences, 119(23), e2111312119. https://doi.org/10.1073/pnas.211131211
[37]. White II, D. A., Welty-Bernard, A., Rasmussen, C., & Schwartz, E. (2009). Vegetation controls on soil organic carbon dynamics in an arid, hyperthermic ecosystem. Geoderma150(1-2),214-223.https://doi.org/10.1016/j.geoderma.2009.02.011
[38]. Wohlfahrt, G., Fenstermaker, L. F., & ARNONE III, J. A. (2008). Large annual net ecosystem CO2 uptake of a Mojave Desert ecosystem. Global Change Biology14(7), 1475-1487. https://doi.org/10.1111/j.1365-2486.2008.01593.x
[39]. Yang, Y., Liu, L., Zhang, P., Wu, F., Wang, Y., Xu, C., ... & Kuzyakov, Y. (2023). Large-scale ecosystem carbon stocks and their driving factors across Loess Plateau. Carbon Neutrality2(1), 5. https://doi.org/10.1007/s43979-023-00044-w