مروری بر گیاه‌پالایی خاک‌های آلوده به فلزات سنگین در معادن

نوع مقاله : مقاله مروری

نویسندگان

1 گروه مدیریت مناطق بیابانی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران

2 گروه علوم جنگل، دانشگاه ایلام، ایلام، ایران

3 گروه علوم مرتع، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران

10.29252/aridbiom.2025.21196.1993

چکیده

فعالیت معادن به‌منظور استخراج عناصر با ارزش اقتصادی صورت می‌گیرد که این امر به‌ تخریب اراضی طبیعی و دست‌نخورده منجر می‌شود. به‌دنبال این مسئله بقایای استخراج مواد معدنی به‌دلیل وجود عناصر سمی آلی و غیر آلی بر روی خاک منطقه تأثیر گذاشته و خطرات بالقوه‌ای برای زیست‌بوم‌ها به‌ویژه در مناطق خشک و نیمه‌خشک پدید می‌آورد که علت این امر انتشار آلودگی از طریق فرسایش بادی و آبی و محدودیت استقرار گیاه به‌علت تنش‌های محیطی و بادهای پرسرعت است. به‌منظور پاک‌سازی اراضی آلوده به فلزات سنگین، فناوری‌های مختلف ازجمله روش‌های فیزیکوشیمیایی نتایج مطلوبی به‌دنبال دارند. اما این روش‌ها؛ غیراقتصادی بوده و تولید آلاینده‌های جانبی را به دنبال دارند. در این بین گیاه‌پالایی روشی طبیعی، اقتصادی، سازگار با محیط‌زیست، کاهش پراکندگی و بازگرداندن بستر به شرایط زیستی قابل‌قبول را دارا هستند که با استفاده از گونه‌های گیاهی مقاوم به‌عنوان امیدوارکننده‌ترین روش جهت پالایش آلاینده‌ها در اطراف معادن انجام می‌گیرد. از طرفی با توجه به‌ اینکه بقایای معدن حاوی غلظت بالایی از فلزات هستند که غیرقابل تجزیه زیستی است، فناوری‌ گیاه‌پالایی به‌عنوان راه‌‌حل مناسب به‌منظور رفع آلودگی این اراضی به‌شمار می‌آید. در نوشتار موجود، پیشینه و مفاهیم، کاربردها و فرایندهای گیاه‌پالایی، فلزات سنگین و ویژگی‌ها و اثرات آن‌ها برگیاهان، واکنش گیاهان مختلف به فلزات گوناگون و فرایندهای جذب و انتقال آن‌ها، ویژگی‌های گیاهان مقاوم و نقش آن‌ها در گیاه‌پالایی و گیاهان فراانباشت‌کننده به‌طور جامع مورد‌بحث قرار گرفتند. نتایج تحقیقات انجام‌شده، نشان‌داده است که بیشتر فلزات، اثرات نامطلوب بر گیاهان داشته و ریخت‌شناسی آن‌ها را تغییر می‌دهند و گیاهان بومی پتانسیل بهتری در گیاه‌پالایی خاک معادن دارند. لذا پیشنهاد می‌شود در تحقیقات آینده به‌منظور پاک‌سازی اراضی آلوده به فلزات سنگین در اطراف معادن، گیاهان بومی، سازگار و مقاوم با شرایط مناطق مورد‌توجه قرار گیرند.

کلیدواژه‌ها

موضوعات


[1]. Abou Shanab, R.A.I., Tammam, A.A., El-Aggan, W.H., & Mubarak, M.M. (2017). Phytoremediation potential of wild plants collected from heavy metals contaminated soils. International Journal of Geology, Agriculture and Environmental Sciences, 5(4), 15-19.
[2]. Acosta, J.A., Abbaspour, A., Martinez, G.R., Martinez Martinez, S.,  Zornoza, R., Gabarr, M., & Faz,  A. (2018). Phytoremediation of mine tailings with Atriplex halimus and organic/inorganic amendments: A five-year field case study. Chemosphere, 204, 71-78. https://doi.org/10.1016/j.chemosphere.2018.04.027
[3]. Adamu, G.K., Auwal, M., Kasim, A.A., & Halliru, J.L. (2015). Assessment of heavy metals in soils and surface water around mines in Jos metropolis, plateau state Nigeria. International Journal of Multidisciplinary Research and Development, 2(12), 386-389.
[4]. Adelanwa, E.B., Bako, S.P., Iortsuun, D.N., & Japhet, W.S. (2016). Effects of Copper and Lead On The Chlorophylis (a and b) and The Anti Oxidant Enzymes (Catalase and Peroxidase) in Lemnatrisulcal (Family: Lemnaceae). Journal of Tropical Biosciences, 11, 1-11.
 [5]. Akinleye, C., Adewumi, A.J., & Akinleye, R.O. (2022). A Systematic Review of Ecological and Human Health Risk Associated with Metals in Soils around Mining Areas in Nigeria. Achievers Journal of Scientific Research, 4(1), 120-141.
[6]. Akpanowo, M.A., Umaru, I., Joshua, E.O., Iyakwari, S., & Yusuf, S.D. (2020). Assessment of heavy metals contamination and pollution around mining sites of Anka, north-west Nigeria. Nippon Journal of Environmental Science, 1(3), 1-18. https://doi.org/10.1007/s10535-011-0041-7
[7]. Alharbi, M., & Aljeddani, G. (2022). Heavy Metals Phytoremediation and Its Impact on Photosynthetic Pigments and Metabolic Content in Some Plant Species Grown in the Streets of Jeddah Governorate, Saudi Arabia. Journal of Environmental Protection, 13(7), 557-574. DOI: 10.4236/jep.2022.137035
 [8]. Ali, S., Zeng, F., Qiu, L., & Zhang, G. (2011). The effect of chromium and aluminum on growth, root morphology, photosynthetic parameters and transpiration of the two barley cultivars. Biologia Plantarum, 55 (2), 291-296. https://doi.org/10.1007/s10535-011-0041-7
[9]. Ali, H., Khan, E., & Anwar Sajad, M. (2013). Phytoremediation of heavy metals Concepts and applications. Chemosphere, 91, 869–881. https://doi.org/10.1016/j.chemosphere.2013.01.075
[10]. Alizadeh, A., Ghorbani, J., Motamedi, J., Vahabzadeh, G., Edraki, M., & Vander Ent, A. (2022). Metal and metalloid accumulation in native plants around a copper mine site: implications for phytostabilization. International Journal of Phytoremediation, 24(11), 1141-1151. https://doi.org/10.1080/15226514.2021.2011831
[11]. Aloud, S.S., Alotaibi, K.D., Almutairi, K.F., & Albarakah, F.N. (2023). Phytoremediation Potential of Native Plants Growing in ndustrially Polluted Soils of Al-Qassim, Saudi Arabia. Sustainability, 15(3), 1-14. https://doi.org/10.3390/su15032668
[12]. Al Rashedy, H.S.M.A. (2021). The physiological response of mint plant (Mentha spicata) growing with soil contaminated with heavy metals. Systematic Reviews in Pharmacy, 12(2), 133-138.
[13]. Alshaal, T., Domokos Szabolcsy, E., Marton, L., Czako, M., Katai, J., Balogh, P., Elhawat, N., El Ramady, H., & Fari, M. (2013). Phytoremediation of bauxite derived red mud by giant reed. Environmental Chemistry Letters, 11, 295-302. https://doi.org/10.1007/s10311-013-0406-6
[14]. Alvarez, V.M., Veronica, C.J., Mabel, V.M., & Victor D.S. (2015). Phytoremediation of Mine Tailings Using Lolium Multiflorum. International Journal of Environmental Science and Development, 6(4), 245-251. DOI: 10.7763/IJESD.2015.V6.599
[15]. Amini, F.L., Mirghaffari, N., & Eshghi Malayeri, B. (2011). Nickel Concentration in Soil and Some natural Plant Species around Ahangaran Lead and Zinc Mine in Hamedan. Journal  of Environmental Sciences and Technology, 13(1), 11-20. https://sid.ir/paper/87638/en. [in Farsi]
[16]. Amin Kamal, M., Perveen, K., Khan, F., Sayyed, R.Z., Ghim Hock, O., Chandra Bhatt, S., Singh, J., & Obaid Qamar, M. (2023). Effect of different levels of EDTA on phytoextraction of heavy metal and growth of Brassica juncea L. Frontiers in Microbiology, 14, 1-11. https://doi.org/10.3389/fmicb.2023.1228117
[17]. Asadi Karam, O., & Qishlaqi, A. (2019). Concentration and speciation of heavy elements in soils and plants around Ijo porphyry copper mine (NW Share-Babak, Kerman province). New Findings in Applied Geology, 13(25), 109-123. 10.22084/nfag.2018.16955.1326 [in Farsi]
[18]. Asati, A., Pichhode, M., & Nikhil, K. (2016). Effect of Heavy Metals on Plants: An Overview. International Journal of Application or Innovation in Engineering and Management, 5(3), 56-66. DOI:10.13140/RG.2.2.27583.87204
[19]. Azizah, D., Lestari, F., Kurniawan, D., Melany, W. R., Apriadi, T., & Murtini, S. (2022). Index of environmental pollution and adaptation of Avicennia marina around the ex-bauxite mining area in Bintan Island. In IOP Conference Series: Earth and Environmental Science (Vol. 967, No. 1, p. 012016). IOP Publishing. DOI 10.1088/1755-1315/967/1/012016
[20]. Azizi, M., Faz, A., Zornoza, R., Martinez, S.M., & Acosta, A. (2023). Phytoremediation Potential of Native Plant Species in Mine Soils Polluted by Metal (loid)s and Rare Earth Elements. Journal of Plants, 12(6), 1-25. https://doi.org/10.3390/plants12061219
[21]. Balali Mood, M., Naseri, K., Tahergorabi, Z., Khazdair, M.R., & Sadeghi, M. (2021). Toxic Mechanisms of Five Heavy Metals: Mercury, Lead, Chromium, Cadmium, and Arsenic. Frontiers in Pharmacology, 12, 1-19. https://doi.org/10.3389/fphar.2021.643972
[22]. Bech, J., Duran, P., Roca, N., Poma, W., Sanchez, I., Barcelo, J., Boluda, R., Roca Perez, L., & Poschenrieder, C. (2012). Shoot accumulation of several trace elements in native plant species from contaminated soils in the Peruvian Andes. Journal of Geochemical Exploration, 113, 106-111. https://doi.org/10.1016/j.gexplo.2011.04.007
[23]. Chinmayee, D., Anu, M.S., Mahesh, B., Sheeba, M.A., Mini, I., & Swapna, T.S. (2014). A comparative study of heavy metal accumulation and antioxidant responses in Jatropha curcas L. Journal of Environmental Science, Toxicology and Food Technology, 8, 58-67.
[24]. Dahrazma, B., Rahmati, Sh., Asghari, H.R., & Sadeghian, M. (2015). Evaluation of the Effects of Choghondarsar Copper Mine on the Concentration of Heavy Metals in Soil and Native Plants (Southwest of Abbasabad). Journal of Mining Engineering, 10 (27), 81-94. 20.1001.1.17357616.1394.10.27.8.1 [in Farsi]
[25]. Dalvand, M., Hamidian, A.H., Zare chahuoki, M.A, Mirjalili, S.A.A., & Esmaeil zadeh, E. (2014). Investigating the Effects of Cu, Pb, Zn and Mn Concentrations in Artemisia sp. Above Ground Biomass in the Rangelands of Darreh Zereshk Copper Mine  Taft . Journal of Rangeland, 8(3), 219-229. 20.1001.1.20080891.1393.8.3.2.2 [in Farsi]
[26]. Dalvand, M., Hamidian, A.H., Zare chahuoki, M.A., Mirjalili, S.A.A., Motasharezadeh, B., & Esmaeil zadeh, E. (2016). Determination of the concentration of heavy metals (Cu, Pb & Zn) in roots of Artemisia sp. in natural lands of Darreh Zereshk copper mine, Taft, Yazd. Journal of Natural Environment, 69(1), 35-46. https://jne.ut.ac.ir/article_58633.html [in Farsi]  
[27]. De Maria, S., Puschenreiter, M., & Rivelli, A.R. (2013). Cadmium accumulation and physiological responseof sunflower plants to Cd during the vegetative growing cycle. Plant, Soil and Environment, 59(6), 254-261.
[28]. Doganlara, Z.B., Doganlara, O., Erdoganb, S., & Onal, Y. (2012). Heavy metal pollution and physiological changes in the leaves of some shrub, palm and tree species in urban areas of Adana, Turkey. Chemical Speciation and Bioavailability, 24 (2), 65-78. https://doi.org/10.3184/095422912X13338055043100
[29]. El Berkaoui, M., El Adnani, M., Hakkou, R., Ouhammou, A., Bendaou, N., & Smouni, A. (2022). Assessment of the Transfer of Trace Metals to Spontaneous Plants on Abandoned Pyrrhotite Mine: Potential Application for Phytostabilization of Phosphate Wastes. Journal of Plants, 11 (2), 1-13. https://doi.org/10.3390/plants11020179
[30]. Elouadihi, N., Laghlimi, M., Moussadek, R., Laghrour, M., Bouabdli, A., & Baghdad, B. (2022). Phytoremediation study of mining soils: case of the Mibladen and Zaida mine (High Moulouya, Morocco). Journal of Experimental Biology and Agricultural Sciences, 10(6), 1391-1400. DOI: https://doi.org/10.18006/2022.10(6).1391.1400
[31]. Emmanuel, N.M., & Nasirudeen, M.B. (2019). Heavy Metal Analysis of Soil Around Mine Sites in Ameri, Enyigba and Ishiagu in Ebonyi State. Journal of Environment and Earth Science, 9(10), 116-122. DOI: 10.7176/JEES/9-10-12
[32]. Farjadi, M., & Norastehnia, A. (2021). Effects of heavy metal mercury on some of the physiological responsses in (Nicotiana tabacum L.). Nova Bioloica Reperta, 8 (2), 102-113. https://nbr.khu.ac.ir/article-1-3388-en.html
[33]. Franco, M.O., Vasquez, M.S., Patino, A., & Dendooven, L. (2010). Heavy metals concentration in plants growing on mine tailings in Central Mexico. Bioresource Technology, 101, 3864-3869. https://doi.org/10.1016/j.biortech.2010.01.013
[34]. Franco, H., Celis, C., Forero, S., Pombo, L.M., & Rodriguez, O.E. (2018). Phytoremediating Activity of Baccharis Latifolia in Soils Contaminated with Heavy Metals. International Journal of Current Pharmaceutical Review and Research, 9(4), 38-43.
[35]. Garcia Robles, H., Melloni, E.G., Navarro, F.B., Martin Peinado, F.J., & Lorite, J. (2022). Gypsum mining spoil improves plant emergence and growth in soils polluted with potentially harmful element. Plant and Soil, 481(5), 315-329. DOI:10.1007/s11104-022-05639-3
[36]. Ghaderian, M., & Nosouhi, S. (2015). The capability of uptake and removal of toxic heavy metals from the industrial discharge of Mobarakeh Steel Complex by some metal accumulating plants. Plant Process and Function, 4 (12), 43-49. 20.1001.1.23222727.1394.4.12.2.2 [in Farsi]
[37]. Gill, R.A., Kanwar, M.K., Reis, A.R., & Ali, B. (2022). Heavy metal toxicity in plants: Recent insights on physiological and molecular aspects. Front in Plant Sciences, 12, 1-5. https://doi.org/10.3389/fpls.2021.830682
[38]. Gomes, M.P., Melo Marques, T.C.L.D., Oliveira, M.D., Nogueira, G., Castro, E.M., & Soares, A.M. (2011). Ecophysiological and anatomical changes due to uptake and accumulation of heavy metal in Brachiaria decumbens. Sciences Agriculture, 76 (5), 566-573. https://doi.org/10.1590/S0103-90162011000500009
[39]. Hamidian, A.H., Atashgahi, M., & Khorasani, N. (2014). Phytoremediation of heavy metals (Cd, Pb and V) in gas refinery wastewater using common reed (Phragmites australis). International Journal of Aquatic Biology, 2(1), 29-35. https://doi.org/10.22034/ijab.v2i1.21
[40]. Hananingtyas, I., Nuryanty, C. D., Karlinasari, L., Alikodra, H. S., Jayanegara, A., & Sumantri, A. (2022). The effects of heavy metal exposure in agriculture soil on chlorophyll content of agriculture crops: a meta-analysis approach. In IOP conference series: earth and environmental science (Vol. 951, No. 1, p. 012044). IOP Publishing. DOI 10.1088/1755-1315/951/1/012044
[41]. Hernandeza, J.C.M., Delgadoa, O.R.V., Moralesa, M.C., Caselisb, J.L.V., Juareza, J.D.S., Xometla, O.O., Moralesa, J.A., & Osorio, G.P. (2019). Phytoremediation of mine tailings by Brassica juncea inoculated with plant growth-promoting bacteria. Microbiological Research, 228, 1-8. https://doi.org/10.1016/j.micres.2019.126308
[42]. Hosseinalizadeh, M., Mohammadian Behbahani, A., Yeganeh, H., & Khermandar, Kh. (2023). Investigating the potential of pasture species in plant remediation of soils in the downstream area of bauxite mine crushers of Alumina Company of Iran-Jajarm. Research project between Gorgan University of Agricultural Sciences and Natural Resources and Jajarm Alumina. 511 p. [in Farsi]
[43]. Hosseinalizadeh, M., Yeganeh, H., Khermandar, Kh., & Saadatfar, A. (2024). Investigating phytoremediation of Lycium depressum Plant around the Iodine factory of Golestan province. Journal of Soil Management and Sustainable Production, (in press). https://doi.org/10.22052/deej.2024.255242.1068 [in Farsi]
[44]. Hoseinpour, F., Hosein Nejad Mohtarami, M., Alipour, S., & Torbati, S. (2020). Heavy Metal Contaminations at Two Iranian Copper Mining Areas and the Remediation by Indigenous Plants. Iranian Journal of Toxicology, 14(2), 81-92. https://doi.org/10.32598/ijt.14.2.501
 [45]. Jahantab, E. (2021). Potential of heavy metals uptake by Gundelia tournefortii in rangelands around the Yasouj cement factory. Iranian Journal of Range and Desert Research, 28 (4), 733-744. https://doi.org/10.22092/ijrdr.2021.125280 [in Farsi]
[46]. Alfaraas, A. J., Khairiah, J., Ismail, B. S., & Noraini, T. (2016). Effects of heavy metal exposure on the morphological and microscopical characteristics of the paddy plant. Journal of environmental biology37(5), 955.
[47]. Jiang, K., Wu, B., Wang, C., & Rana, Q. (2019). Ecotoxicological effects of metals with different concentrations and types on the morphological and physiological performance of wheat. Journal of Ecotoxicology and Environmental Safety, 167, 345–353. https://doi.org/10.1016/j.ecoenv.2018.10.048
[48]. Jimenez, M.N., Bacchetta, G., Navarro, F.B., & Casti, M. (2021). Native Plant Capacity for Gentle Remediation in Heavily Polluted Mine. Journal of Applied Sciences, 11(4), 1-17. https://doi.org/10.3390/app11041769
[49]. Karn, R., Ojha, N., Abbas, S., & Bhugra, S. (2021). Community based Research and Innovations in Civil. A review on heavy metal contamination at mining sites and remedial techniques. IOP Conf. Series: Earth and Environmental Science (Vol. 796, p. 012013). DOI 10.1088/1755-1315/796/1/012013
[50]. Khermandar, Kh., Hosseinalizadeh, M., Mahdavi, A., Mohammadian Behbahani, A., & Yeganeh, H. (2023). Ecological Restoration of Polluted Soils in Arid Region (Case Study: Bauxite Crusher of Jajarm Alumina). Desert Management, 10(4), 55-80. https://doi.org/20.1001.1.24763985.1401.10.4.4.4 [in Farsi]
[51]. Khermandar, Kh., Hosseinalizadeh, M., Mahdavi, A., Mohammadian Behbahani, A., & Yeganeh, H. (2023). Investigating the Phytoremediation of Seidlitzia Rosmarinus and Haloxylon aphyllum Desert Plants: A Case Study of Bauxite Crusher of Jajarm Alumina Mine. Desert Ecosystem Engineering Journal, 12(38), 45-58. https://doi.org/10.22052/deej.2023.252496.1010 [in Farsi]
[52]. Khorami pour, S., Mafi gholami, R., &  Jahani, A. (2019). An Investigation on the Possibility of Heavy Metal (Pb and Ni) Phytoremediation from Plant Artemisia Sieberi in Mohammadabad Waste Disposal Site in Ghazvin. Journal of Environmental Science and Technology, 21(10), 91-103. https://sid.ir/paper/359909/en [in Farsi]
[53]. Mensah, M. K., Drebenstedt, C., Okoroafor, P. U., & Wiafe, E. D. (2022). J. curcas and Manihot esculenta are potential super plants for phytoremediation in multi-contaminated mine spoils. In MATEC Web of Conferences (Vol. 373, p. 00080). EDP Sciences. https://doi.org/10.1051/matecconf/202237300080
[54]. Kord, B., Safikhani, F., Khademi, A., & Pourabbasi, S. (2018). Investigating the role of rangeland plants in remediation of soils contaminated with lead and zinc. Iranian Journal of Range and Desert Research, 25 (1), 78-88. https://doi.org/10.22092/ijrdr.2018.116228 [in Farsi]
 [55]. Kumar Roy, S., Woo Cho, S., Jeong Kwon, S., Mostafa Kamal, A.H., Woo Kim, S., Won Oh, M., Soon Lee, M., Yook Chung, K., Xin, Z., & Hee Woo, S. (2016). Morpho-Physiological and Proteome Level Responses to Cadmium Stress in Sorghum. Plos One, 11(2), 1-27. https://doi.org/10.1371/journal.pone.0150431
[56]. Kumar, M., Singh, A.K., & Sikandar, M. (2020). Biosorption of Hg (II) from aqueous solution using algal biomass: kinetics and isotherm studies. Heliyon, 6 (1), 1-10.
[57]. Kumar, A.S., Alak, K.S., Manish, S.R., & Mohd, S. (2021). Remediation strategies for heavy metals contaminated ecosystem: A review Mahendra. Environmental and Sustainability Indicators, 12, 1-13. https://doi.org/10.1016/j.indic.2021.100155
[58]. Laghlimi, M., Elouadihi, N., Baghdad, B., Moussadek, R., Laghrour, M., & Bouabdli, A. (2022). Influence of Compost and Chemical Fertilizer on Multi-Metal  Contaminated Mine Tailings Phytostabilization by Atriplex nummularia. Ecological Engineering and Environmental Technology, 23 (6), 204–215. DOI 10.12912/27197050/152915
[59]. Li, R., Dong, F.,Yang, G., Zhang, W., Zong, M., Nie, X., Zhou, L., Babar, A., Liu, J., Ram, B.K., Fan, C., & Zeng, Y. (2019). Characterization of Arsenic and Uranium Pollution Surrounding a Uranium Mine in Southwestern China and Phytoremediation Potential. Polish Journal of Environmental Studies, 28(6), 173-185. DOI: 10.15244/pjoes/103446
[60]. Lotfy, S.M., & Mostafa, A.Z. (2014). Phytoremediation of contaminated soil with Cobalt and Chromium. Journal of Geochemical Exploration, 144, 367–373. https://doi.org/10.1016/j.gexplo.2013.07.003
[61]. Maddah, S.M., & Moraghebi, F. (2013). The comparisons between Picea abies and Pinus sylvestris in respect of lead phytoremediation potential. International Journal of Biosciences, 3(2), 35-41. doi: http://dx.doi.org/10.12692/ijb/3.2.35-41
[62]. Madhu Priya, M., & Ravi Shankar, S. (2020). Effect of Heavy Metals on Growth and Development of Cultivated Plants with Reference to Cadmium, Chromium and Lead: A Review. Journal of Stress Physiology & Biochemistry, 16 (3), 84-102.
[63]. Makombe, N., & Gwisai, R.D. (2018). Soil Remediation Practices for Hydrocarbon and Heavy Metal Reclamation in Mining Polluted Soils. The Scientific World Journal, 3, 1-7. https://doi.org/10.1155/2018/5130430
[64]. Manzoor, M.M., Goyal, P., Gupta, A.P., & Gupta, S. (2020). Heavy metal soil contamination and bioremediation. Bioremediation and Biotechnology, Vol 2: Degradation of Pesticides and Heavy Metals, 221-239. Springer. DOI: https://doi.org/10.1007/978-3-030-40333-1_13
 [65]. Marcelo Silva, J., Ramabu, M., & John Siebert, S. (2023). Phytoremediation and Nurse Potential of Aloe Plants on Mine Tailings. International Journal of Environmental Research and Public Health, 20 (2), 1-10. https://doi.org/10.3390/ijerph20021521
[66]. Martinez Sanchez, M.J., Garcia Lorenzo, M.L., Perez Sirvent, C., & Bech, J. (2012). Trace element accumlation in plants from an aridic area affected by mininig activities. Journal of Geochemical Exploration, 123, 8-12. https://doi.org/10.1016/j.gexplo.2012.01.007
[67]. Merzougui, A., Mariama, L., Hamid, F.E., Lachgar, M., El Anssari, A., & Mrani, D. (2022). Lead uptake, flavonoids and proline relationship in Atriplex nummularia growing in a galena mining are. Mediterranean Journal of Chemistry, 12 (1), 11-18. DOI: http://dx.doi.org/10.13171/mjc02204121619merzougui
[68]. Mingyuan, L., Samsuri, A.W., Shukor, M.Y., & Phang, L.Y. (2020). Growth Performance of Jatropha curcas Cultivated on Local Abandoned Bauxite Mine Soil. Sustainability, 12(19), 1-14. https://doi.org/10.3390/su12198263
[69]. Mirck, J., & Zalesny, R.S. (2015). Mini Review of knowledge gaps in salt tolerance of plants applied to willows and poplars. International Journal of Phytoremediation, 17(7), 640-650. https://doi.org/10.1080/15226514.2014.950414
[70]. Moameri, M., Jafari, M., Tavili, A., Motasharezadeh, B., & Zarechahuoki, M.A. (2015). Assessing rangeland plants potential for phytoremediation of contaminated soil with Lead and Zinc (Case study: Rangelands located around National Iranian Lead & Zinc Factory-Zanjan). Journal of Rangeland, 9(1), 29-42. https://doi.org/20.1001.1.20080891.1394.9.1.3.6 [in Farsi]
[71]. Moameri, M., Jafari, M., Tavili, A., Motasharezadeh, B., & Zare Chahouki, M.A. (2017). Rangeland Plants Potential for Phytoremediation of Contaminated Soils with Lead, Zinc, Cadmium and Nickel (Case Study: Rangelands around National Lead and Zinc Factory, Zanjan, Iran). Journal of Rangeland Science, 7(2), 160-171.
[72]. Montalvan Olivares, D.M., Santana, C.S., Velasco, F.G., Luzardo, F.H.M., Andrade, S.F.R., Ticianelli, R.B., Armelin, M.J.A., & Genezini, F.A. (2021). Multi element contamination in soils from major mining areas in Northeastern of Brazil. Journal of Environmental Geochemistry and Health, 43(11), 4553-4576. DOI: https://doi.org/10.1007/s10653-021-00934-x
[73]. Montazeri, F., Tamartash, R., Tatian, M., & Hojati, M. (2018). Potential of rangeland species Astragalus globiflorus and Acantholimon hohenackeri in heavy metals absorption (Case study: rangelands around the Firoozkouh cement factory). Iranian Journal of Range and Desert Research, 25 (2), 278-288. https://doi.org/10.22092/ijrdr.2018.116840 [in Farsi]
[74]. Moore, F., Dehghani, Sh., & Keshavarzi, B. (2015). Trace element concentration in soils and plants in the vicinity of Miduk copper mine. Journal of Economic Geology, 6(2), https://doi.org/305-314. 10.22067/econg.v6i2.44780 [in Farsi]
[75]. Muddarisna, N., Krisnayanti, B.D., Utami, S.R., & Handayanto, E. (2013). Potential of wild plants for phytoremediation of soil contaminated with mercury of gold cyanidation tailings. Journal Of Environmental Science Toxicology And Food Technology, 4(1), 15-19.
[76]. Muhammad, S., Shah, M.T., & Khan, S. (2011). Heavy metal concentrations in soil and wild plants growing around Pb-Zn sulfide terrain in the Kohistan region, northern Pakistan. Microchemical Journal, 99, 67-75. https://doi.org/10.1016/j.microc.2011.03.012
[77]. Murtaza, G., Murtaza, B., Niazi, N. K., & Sabir, M. (2014). Soil contaminants: sources, effects, and approaches for remediation. In Improvement of Crops in the Era of Climatic Changes: Volume 2 (pp. 171-196). New York, NY: Springer New York. DOI: https://doi.org/10.1007/978-1-4614-8824-8_7
[78]. Nedjimi, B. (2021). Phytoremediation: a sustainable environmental technology for heavy metals decontamination. Springer Nature Applied Sciences, 3(3), 1-19. https://doi.org/10.1007/s42452-021-04301-4
[79]. Novo, L. A., Castro, P. M., Alvarenga, P., & da Silva, E. F. (2018). Plant growth–promoting rhizobacteria-assisted phytoremediation of mine soils. In Bio-geotechnologies for mine site rehabilitation (pp. 281-295). Elsevier. https://doi.org/10.1016/B978-0-12-812986-9.00016-6
[80]. Obinna Igwe, E., Ede, C.O., Eyankware, M.O., Nwachukwu, C.M., & Williams, O.B. (2022). Assessment of Potentially Toxic Metals from Mine Tailings and Waste Rocks Around Mining Areas of Oshiri‑Ishiagu Region, Southeastern Nigeria. Earth Systems and Environment, 6(2), 597–615. https://doi.org/10.1007/s41748-022-00306-0
[81]. Palutoglu, M., Akgul, B., Suyarko, V., Yakovenko, M., Kryuchenko, N., & Sasmaz, A. (2018). Phytoremediation of Cadmium by Native Plants Grown on Mining Soil. Bulletin of Environmental Contamination and Toxicology, 100(2), 293–297. https://doi.org/10.1007/s00128-017-2220-5
[82]. Parsadoust, F., & Bahreininejad, B. (2014). Potential of rangeland species in cleaning cadmium contaminated soils in Irankooh region. Iranian Journal of Range and Desert Reseach, 21(2), 317-328. https://doi.org/10.22092/ijrdr.2014.11379 [in Farsi]
[83]. Parraga Aguado, I., Gonzalez Alcaraz, M.N., Alvarez Rogel, J., & Conesa, H.M. (2014). Assessment of the employment of halophyte plant species for the phytomanagement of mine tailings in semiarid areas. Ecological Engineering, 71, 598–604. https://doi.org/10.1016/j.ecoleng.2014.07.061
[84]. Paz Ferreiro, J., Lu, H., Fu, S., Mendez, A., & Gasco, G. (2014). Use of phytoremediation and biochar to remediate heavy metal polluted soils: a review. Journal of Solid Earth, 5(1), 65-75.  https://doi.org/10.5194/se-5-65-2014, 2014.
[85]. Peco, J.D., Higueras, P., Campos, J.A., Esbri, J.M., Moreno, M.M., Brunet, F.B., Luisa, M., & Sandalio, L.M. (2021). Abandoned Mine Lands Reclamation by Plant Remediation Technologies. Sustainability, 13 (12), 1-27. https://doi.org/10.3390/su13126555
[86]. Prasad Rath, B., Hota, S., Subhadarshini, S., Dash, D., & Kaibalya Das, P. (2019). Consequence of chromium-tainted soil on physical and biochemical responses of Vigna radiata L. Journal of Applied Biology and Biotechnology, 7(1), 35-41. DOI: 10.7324/JABB.2019.70107
[87]. Qassim, A.A., & Al Jawasim, M.H. (2019). Effects of Heavy Metals on Physiological Status of Plants. Plant Archives, 19(2), 2865-2871.
[88]. Raffa, C.M., Chiampo, F., & Shanthakumar, S. (2021). Remediation of Metal/Metalloid-Polluted Soils: A Short Review. Applied Sciences, 11, 1-23. https://doi.org/10.3390/app11094134
[89]. Rahman Khan, M., & Mahmud Khan, M. (2010). Effect of Varying Concentration of Nickel and Cobalt on the Plant Growth and Yield of Chickpea. Australian Journal of Basic and Applied Sciences, 4(6), 1036-1046.
[90]. Rahim, F.A.A., Hamid, T.H.T.A., & Zainuddin, Z. (2019). Jatropha curcas as a potential plant for bauxite phytoremediation. In IOP Conference Series: Earth and Environmental Science (Vol. 308, No. 1, p. 012006). IOP Publishing. DOI 10.1088/1755-1315/308/1/012006
[91]. Ramazani, M., Mosleh Arani, A., Sodaeizadeh, H., & Khayat, M. (2023). Effect of Bacillus cereus and selenium on some morpho-physiological characteristics and ion content of Salsola arbuscula under lead stress. Journal of Arid Biome13(2), 193-207..‏ https://doi.org/10.29252/aridbiom.2024.20802.1968
[92]. Rashed, M.N. (2010). Monitoring of contaminated toxic and heavy metals, from mine tailings through age accumulation, in soil and some wild plants at Southeast Egypt. Journal of Hazardous Materials, 178(1-3), 739-746. https://doi.org/10.1016/j.jhazmat.2010.01.147
[93]. Riyazuddin, R., Nisha, N., Ejaz, B., Iqbal, M., Khan, R., Kumar, M., Ramteke, P.W., & Gupta, R. (2022). A Comprehensive Review on the Heavy Metal Toxicity and Sequestration in Plants. Biomolecules, 12(43), 1-26. https://doi.org/10.3390/biom12010043
[94]. Rojas Solis, D., Larsen, J., & Lindig Cisneros, R. (2023). Arsenic and mercury tolerant rhizobacteria that can improve phytoremediation of heavy metal contaminated soils. Peer Journal, 11(10), 1-18. https://doi.org/10.7717/peerj.14697
[95]. Ruchi Bharti, K., & Sharma, R. (2021). Effect of heavy metals: An overview. materialstoday: proceedings, 51(2), 880-885. https://doi.org/10.1016/j.matpr.2021.06.278
[96]. Sahihi, T., Jafari, M., Javadi, A., & Tahmoures, M. (2020). Investigation of Phytoremediation Ability of Rangeland Species in Soils Contaminated with Copper and Manganese). Iranian Journal of Soil and Water Research, 51 (6), 1594-1604. https://doi.org/10.22059/ijswr.2020.293146.668417 [in Farsi]
[97]. Santos Jallath, J., Castro Rodrigues, A., Huezo Casillas, J., & Torres Bustillos, L. (2012). Arsenic and heavy metals in native plants tailings impoundments in Queretaro, Mexico. Physics and Chemistry of the Earth, 37-39, 10-17. https://doi.org/10.1016/j.pce.2011.12.002
[98]. Sarathchandra, S.S., Rengel, Z., & Solaiman, Z.M. (2023). A Review on Remediation of Iron Ore Mine Tailings via Organic Amendments Coupled with Phytoremediation. Journal of Plants, 12, 1-18. https://doi.org/10.3390/plants12091871
[99]. Sergeevna Budovich, L. (2021). Effects of heavy metals in soil and plants on ecosystems and the economy. Caspian Journal of Environmental Sciences, 19 (5), 991-997. https://doi.org/10.22124/cjes.2021.5331
[100]. Shahid, M., & Khalid, S. (2020). Foliar application of lead and arsenic solutions to Spinacia oleracea: biophysiochemical analysis and risk assessment. Environmental Science and Pollution Research, 27, 39763–39773. https://doi.org/10.1007/s11356-019-06519-7
[101]. Sharifi, Z., Sinegani, A.A.S., & Shariati, S. (2012). Potential of Indigenous Plant Species for the Phytoremediation of Arsenic Contaminated Land in Kurdistan (Iran). Soil and Sediment Contamination: Benchmarking: An International Journal, 21(5), 557–573. https://doi.org/10.1080/15320383.2012.678951
[102]. Shi, J., Qian, W., Jin, Z., Zhou, Z., Wang, X., & Yang, X. (2023). Evaluation of soil heavy metals pollution and the phytoremediation potential of coppernickel mine tailings ponds. Plos One, 18(3), 1-16. https://doi.org/10.1371/journal.pone.0277159
[103]. Selvaraj, K., Ramasubramanian, V., & Kumar, M. (2021). Phytoremediation of Soil Contaminated with Arsenic, Nicke and Copper. Indian Journal of Environmental Scienes, 26(2), 51-59.
[104]. Siyar, R., Doulati Ardejani, F., Norouzi, P., Maghsoudy, S., Yavarzadeh, M., Taherdangkoo, R., & Butscher, C. (2022). Phytoremediation Potential of Native Hyperaccumulator Plants Growing on Heavy-Metal-Contaminated Soil of Khatunabad Copper Smelter and Refinery, Iran. Water, 14(22), 1-19. https://doi.org/10.3390/w14223597
[105]. Sohrabizadeh, Z., Sodaeizadeh, H., Hakimzadeh, M. A., Taghizadeh‐Mehrjardi, R., & Ghanei Bafghi, M. J. (2023). A statistical approach to study the spatial heavy metal distribution in soils in the Kushk Mine, Iran. Geoscience Data Journal10(3), 315-327. https://doi.org/10.1002/gdj3.175
[106]. Solgi, E., Zamanian, ‎A., & Beigmohammadi, F. (2020). Investigating the effect of distance from source and species type on the absorption ability of heavy metals by tree species around Nahavand cement factory. Journal of Plant Ecosystem Conservation, 8(16), 321-343. URL: http://pec.gonbad.ac.ir/article-1-600-en.html [in Farsi]
[107]. Soltani javid, A.,  Moraghebi, F., & Farzami Sepehr, M. (2014). The Role of Ephedra Poracera Fisch & Mey. in Absorbing Heavy Metals in Robat Karim Manganese ore Plant. Iranian Plant Ecophysiology Research, 9(2), 65-71. https://sid.ir/paper/185552/en [in Farsi]
[108]. Soni, S., & Jain, S. (2014). Areview on phytoremediation of heavy metals from soil by using plants to remove pollutants frome the environment. International Journal of Adavanced Research, 2(8), 197-203. Journal homepage: http://www.journalijar.com
[109]. Tamartash, R., Montazeri, F., Tatian, M.R., & Vahab Zadeh, Gh. (2018). Heavy metal concentrations (Cu, Pb and Zn) in three rangeland species and adjacent soils around Kiasar Cement Factory in Northern Iran. Environmental Sciences, 15(4), 1-14. https://sid.ir/paper/117718/en [in Farsi]
[110]. Vojodi Mehrabani, L., Valizadeh Kamran, R., & Mirzaei, H. (2019). The impact of Zn and Cd heavy metals on the growth and some physiological characteristics of spinach. Genetic Engineering and Biosafety Journal, 8(2), 144-153. https://doi.org/20.1001.1.25885073.1398.8.2.2.0
 [111]. Wanitsawatwichai, K., & Sampanpanish, P. (2021). The combination of phytoremediation and electrokinetics remediation technology on arsenic contaminated remediation in tailing storage facilities from gold mine. Heliyon, 7 (8), 1-9. https://doi.org/10.1016/j.heliyon.2021.e07736
 [112]. White, P.J., & Pongrac, P. (2017). Heavy-metal Toxicity in Plants. Plant Stress Physiology, 2(5), 301-332. https://doi.org/10.1079/9781780647296.0300
 
 
 
 
 
 
 
 
 
 
 
 
 
 
[113]. Xiong, H., Duan, C., Xinxiang, A., & Chen, M. (2013). Response of scutellarin content to heavy metals in Erigeron breviscapus. International Journal of Environmental Science and Development, 4, 277-281. DOI: 10.7763/IJESD.2013.V4.353
[114]. Zareh reshqueih, M., Hamidian, A.H., & Jabbarian Amiri, B. (2018). Investigating heavy metal pollution in soil and plant (Astragalus sp.) in lands around Khotoun Abad melting plant. Journal of Natural Environment, 71(2), 185-195. https://doi.org/10.22059/jne.2018.250891.1472 [in Farsi]
[115]. Zeinali nejad, M., & Farami, M. (2015). The Case Study of Miduk Copper Mine with and Emphasis on Concentrantion of Heavy Metals in Soil and Plants. Journal of Plant Environmental Physiology , 10(38), 24-38. [in Farsi]
 [116]. Zhang, W., Zhao, Y., Xu, Z., Huang, H., Zhou, J., & Yang, G. (2020). Morphological and Physiological Changes of Broussonetia papyrifera Seedlings in Cadmium Contaminated Soil. Journal of Plants, 9, 1-17. https://doi.org/10.3390/plants9121698
[117]. Zoufan, P., Shiralipour, N., & Rastegharzadeh, S. (2016). Investigation of uptake and accumulation of zinc in Malva parviflora: a population collected from areas surrounding production industries of steel in Ahvaz. Plant Process and Function, 5 (15), 43-56. . https://doi.org/20.1001.1.23222727.1395.5.15.4.7 [in Farsi]..