تعیین توزیع آماری مناسب برای محاسبه شاخص RDI در مناطق خشک (مطالعه موردی: ایران مرکزی)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد مهندسی آبخیزداری، دانشگاه یزد، یزد، ایران

2 استادیار، دانشکده منابع طبیعی و کویرشناسی، دانشگاه یزد، یزد، ایران

3 دانشیار، دانشکده منابع طبیعی و کویرشناسی، دانشگاه یزد، یزد، ایران

4 استاد، دانشکده منابع طبیعی و کویرشناسی، دانشگاه یزد، یزد، ایران

10.29252/aridbiom.2022.17245.1873

چکیده

پایش خشکسالی با استفاده از شاخص ­های مناسب، اهمّیّت زیادی در مدیریت منابع آب بویژه در مناطق خشک و نیمه ­خشک دارد. انتخاب این شاخص و محاسبة صحیح آن از اهمّیّت قابل­ توجّهی در مطالعة خشکسالی برخوردار است. هدف این مطالعه، تعیین توزیع آماری مناسب برای محاسبة شاخص خشکسالی RDI در مناطق خشک و نیمه ­خشک ایران مرکزی می­ باشد. بدین منظور، 16 ایستگاه سینوپتیک در محدودة ایران مرکزی انتخاب شدند. برای محاسبة شاخص RDI از داده­ های بارش و همچنین تبخیر-تعرّق پتانسیل با روش فائو-پنمن-مانتیث استفاده شد. برای انتخاب مناسب ­ترین توزیع آماری، 17 توزیع آماری مورد مطالعه قرار گرفت. شاخص RDI برای هر ایستگاه به صورت سالانه و بر اساس برازش به هر یک از 17 توزیع مورد مطالعه به صورت جداگانه محاسبه شد. سپس بر اساس معیارهای AIC و BIC، بهترین توزیع آماری برای محاسبه شاخص RDI برای هر ایستگاه انتخاب شد. اگرچه در منابع توصیه شده که محاسبه شاخص RDI از طریق برازش داده ­ها به یکی از توزیع ­های گاما و یا لوگ ­نرمال انجام شود، اما نتایج این پژوهش نشان داد که در بیشتر ایستگاه­ های مورد مطالعه، توابع توزیع لوگ نرمال و گاما نمی ­توانند به عنوان مناسب ­ترین تابع توزیع انتخاب شوند. بر اساس نتایج، توزیع گاما جزو شش توزیع برتر در تمام ایستگاه ­های مورد مطالعه بود. همچنین نتایج نشان داد مقادیر RDI محاسبه شده بر اساس توزیع ­های مختلف در سال ­های خشک و مرطوب، تفاوت نسبتاً قابل­ توجّهی دارند که اهمّیّت انتخاب توزیع آماری مناسب در محاسبه شاخص RDI را نشان می­ دهد. برازش توزیع­ های مورد مطالعه به داده ­های بارش در ایستگاه­ های مختلف نشان داد توزیع Nakagami عملکرد بهتری جهت برازش به داده ­های بارش دارد. در مورد تبخیر و تعرق پتانسیل، در ایستگاه­ های مختلف توزیع ­های متفاوتی بهترین برازش را ارائه کردند.

کلیدواژه‌ها


[1]. Azadi, S., Soltani Kopaei, S., Faramarzi, M., Soltani Tudeshki, A. (2015). Evaluation of Palmer Drought Severity Index in Central Iran. JWSS, 19(72), 305-319, (in Farsi).
[2]. Bazrafshan, O., Mahmoodzade, F., Asgarinejad, A. & Bazrafshan, A. (2019). Adaptive Evaluation of SPI, RDI, and SPEI indices in Analyzing the Trend of Intensity, Duration, and Frequency of Drought in Arid and Semi-Arid Regions of Iran, Irrigation Sciences and Engineering (Scientific Journal of Agriculture), 42(3), 117-131. (in Farsi).
[3]. Edwards, D. C. & McKee, T. B. (1997). Characteristics of 20th century drought in the United States at multiple time scales, Colorado State University, Ft, 97-2.
[4]. Fatemi, M., Rahimian, M., Ekrami, M., Barkhordari, J. (2019). RDI Spatial Analysis in Central Iran. Iranian Journal of Irrigation and Water Engineering, 36, 160-176, (in Farsi).
[5]. Ghobaee, M., Mosaedi, A., (2014). Modification of RDI drought index based on the most appropriate method of estimating evapotranspiration and probability distribution function. Journal of Rangeland and Watershed Management, 4(66), 565-582, (in Farsi).
[6]. Mishra, A. K., Singh, V, P. (2010). A review of drought concepts. Journal of Hydrology, 391, 202-216.
[7]. McKee, T. B., Doesken, N. J. & Kleist, J. (1993). The relationship of drought frequency and duration to time scales. In: Eighth Conference on Applied Climatology. American Meteorological Society, Anaheim, CA, 179–186.
[8]. Manzur, D., Yadi Pour, M., (2016). Studying the Iranian Electricity Market Price with an ARMAX-GARCH Mode. Quarterly Journal of Quantitative Economics, 13(1), 97-117.
[9]. Moafimadani, F., Mosavibaygani, M., Ansari, H. (2015). Prediction of Khorasan Razavi Province drought condition at 2011-2030 with LARS-WG downscaling model. Geography and Environmental Hazard, 7(2), 157-171, (in Farsi).
[10]. Moghimi, M.M., Koohi, A., Zareie, A. (2018). Drought monitoring and forecasting in Fars province using RDI index and mathematical model of Markov chain. Iranian Journal of Irrigation and Water Engineering, 8(3), 153-165 (in Farsi).
[11]. Node Farahani, M, A., Rasekhi, A., Parmas, B., Keshvan, A. (2018). The Effects of climate Change on Temperature, Precipation and Drought in UpcominGPeriod in Shadegan Basin. Iran-Water Resources Research, 3(14), 160-173, (in Farsi).
[12]. Raziei, T., Daneshkar Arasteh, P., Akhtari, R., Saghafian, B. (2007). Investigation of Meteorological Droughts in the sistan and Balouchestan Province, Using the Standardized precipitation Index and Markov Chain Model. Iran-Water Research, 3(1), 25-35, (in Farsi).
[13]. Shokoohi, A. (2012). Comparison of RDI and SPI indices for station-scale drought analysis based on agricultural drought. Quarterly Iran. Water Resources Research, 9, 111-122, (in Farsi).
[14]. Tigkas D., Vangelis H., Tsakiris G., 2015. DrinC: a software for drought analysis based on drought indices. Earth Science Informatics, 8(3), 697-709.
[15]. Tsakiris, G., Nalbantis, I., Pangalou, D., Tigkas, D. & Vangelis, H. (2008). Drought meteorological monitoring network design for the Reconnaissance Drought Index (RDI). In: 1st International Conference Drought Management: Scientific and Technological Innovations. Zaragoza, Spain. 12–14, 57–62.
[16]. Tsakiris, G., Pangalou, D., Vangelis, H. (2007). Regional drought assessment based on the Reconnaissance Drought Index (RDI). Water Resources Management, 21, 821-833.
[17]. Waseem, M., Park, D.H., Kim, TW. (2016) Comprehensive Climatological Drought Projection over South Korea under Climate Change. Procedia engineering, 154, 710-717.
[18]. Quevauviller, P. (2011). Adapting to climate change: Reducing water-related risks in Europe-EU policy and research considerations. Environmental Science and Policy, 14(7), 722-729.