اثر سد تنگ حمام بر روی زیستگاه آهوی ایرانی (Subgutturosa Gazella Subgutturosa) در منطقه شکارممنوع قراویز (استان کرمانشاه)

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری بیوسیستماتیک جانوری، دانشکده علوم پایه، دانشگاه رازی، کرمانشاه، ایران

2 استادیار گروه محیط‌زیست، دانشکده منابع طبیعی و محیط‌زیست، دانشگاه ملایر، ملایر، ایران

3 دانشجوی دکتری محیط‌زیست، دانشکده منابع طبیعی و محیط‌زیست، دانشگاه ملایر، ملایر، ایران

10.29252/aridbiom.2021.2004

چکیده

سدها یکی از بزرگ‌ترین ساخته‌های دست بشر هستند که چرخه هیدرولوژی را به‌شدت تحت تأثیر قرار می‌دهند. درمجموع می‌توان تأثیر آن‌ها را به دودسته مثبت و منفی تقسیم نمود. آشکارسازی تأثیر این سازه‌ها بر روی زیستگاه حیات‌وحش، یکی از جنبه‌های مهم توسعه محسوب می‌شود. سد مخزنی تنگ حمام واقع در غرب استان کرمانشاه و شهرستان سرپل ذهاب دارای اثرهایی بر روی زیستگاه آهوی ایرانی (Gazella S.Subgutturosa) است. ازاین‌رو، این مطالعه به‌منظور کمی سازی این اثرها روی زیستگاه گونه مذکور انجام‌گرفته و اثر مثبت و منفی آن با تأثیر بر روی تراکم پوشش گیاهی و مطلوبیت زیستگاه، بررسی‌شده است. مطلوبیت زیستگاه با استفاده از روش آنتروپی بیشینه انجام گرفت. از حد آستانه TSS برای ایجاد نقشه‌های باینری استفاده شد. کمی سازی اثر بر روی پوشش گیاهی نیز با استفاده از میانگین شاخص تراکم پوشش گیاهی (NDVI) سال‌های 2014 تا 2019 در فواصل مختلف بین صفر تا 500 متری از پهنه‌های آبی انجام گرفت. درمجموع از سال 2014 تا 2019، مساحت زیستگاه‌های زیرپوشش آب در محدوده موردمطالعه افزایش پیدا کرده است. در صورت افزایش پهنه‌های آبی در سال‌های آتی، لکه‌های مرکزی منطقه و ارتباط با کشور عراق تهدید می‌شوند؛ اما اثر بر تراکم پوشش گیاهی، حاکی از افزایش میانگین شاخص تراکم در فواصل مختلف تا 500 متر نسبت به سد است. نتایج نشان داد که در شرایط فعلی، سد دارای اثر مثبت بیشتری است اما این افزایش آب پشت سد در آینده، اثر مثبت برای آهوان منطقه نخواهد داشت.

کلیدواژه‌ها


[1]. Akbari Paydar, N., Mohammadian, A. and Razavi, F. (2011). Introducing Soil Density Measuring Machine Continuously. 6th National Congress of Civil Engineering, Semnan University, Semnan, 8 p. (in Farsi).
[2]. Alho, C.J.R. (2011). Environmental of hydropower reservoirs on wild mammals and freshwater turtles in Amazonia: a review.
[3]. Barati GHahfarokhi, S., Soltani, S., KHajeddin, S. and Rayegani, B. (2009). Investigation of Land Use Changes in Qale Shahrokh Basin Using Remote Sensing (1975 - 2002). Journal of Water and Soil Science, 13(47), 349-365. (in Farsi).
[4]. Briones-Salas, M., Lavariega, M.C. and Lira-Torres, I. (2019). Mammal diversity before the construction of a hydroelectric power dam in southern Mexico. Animal Biodiversity and Conservation, 42(1), 99-112.
[5]. Cooper, S.M. and Ginnett, T.F. (2000). Potential effects of supplemental feeding of deer on nest predation. Wildlife Society Bulletin, pp, 660-666.
[6]. Dolan, B. F. (2006). Water developments and desert bighorn sheep: implications for conservation. Wildlife Society Bulletin, 34, 642-646.
[7]. Esmaeili, M. (2019). Investigation of Connection Scenarios of Persian Gazelle (Gazella Subgutturosa Subgutturosa) Distribution Blocks in the Border Area of Kermanshah Province and East of Iraq. Master of Science. Faculty of Natural Resources and Environment. Malayer University. (in Farsi).
[8]. Hadian, F., Jafari, R., Bashari, H. and Ramezani, N. (2013). Investigating the Effects of Hanna Dam Construction on Long-Term Land Use/ Cover Changes. Iranian Journal of Applied Ecology, 2(4), 101-114. (in Farsi).
[9]. Hamilton, A.M., Freedman, A.H. and Franz, R. (2002). Effects of deer feeders, habitat and sensory cues on predation rates on artificial turtle nests. The American midland naturalist, 147(1), 123-134.
[10]. Hervert, J.J., Bright, J.L., Henry, R.S., Piest, L.A. and Brown, M.T. (2005). Home‐range and habitat‐use patterns of Sonoran pronghorn in Arizona. Wildlife Society Bulletin, 33(1), 8-15.
[11]. Hilborn, R. (2013). Ocean and dam influences on salmon survival. Proceedings of the National Academy of Sciences, 110(17), 6618-6619.
[12]. Islamian, S.S. and Asroush, Y. (2003). Investigating the effect of dam construction on climatic parameters. 3rd Regional Climate Change Conference. Isfahan, Iran Meteorological Organization, University of Isfahan, 5p. (in Farsi).
[13]. Jacobsen, D., Milner, A.M., Brown, L.E. and Dangles, O. (2012). Biodiversity under threat in glacier-fed river systems. Nature Climate Change, 2(5), 361-364.
[14]. Jafaree, A., Mirzai, R.A., zamani, R. and mahmoudi, A. (2015). Modeling the Distribution of Isfahan wild sheep in Tang Sayyad Protected Area Based on Improved Presence Data and Selection of Appropriate Variables Using Maximum Entropy. Journal of Applied Ecology, 5(15), 39-48. (in Farsi).
[15]. Jarman, P.J. (1973). The free water intake of impala in relation to the water content of their food. East African Agricultural and Forestry Journal, 38(4), 343-351.
[16]. Jones, C.C., Acker, S.A. and Halpern, C.B. (2010). Combining local‐and large‐scale models to predict the distributions of invasive plant species. Ecological Applications, 20(2), 311-326.
[17]. Jones, I.L., Peres, C.A., Benchimol, M., Bunnefeld, L. and Dent, D.H. (2019). Instability of insular tree communities in an Amazonian mega‐dam is driven by impaired recruitment and altered species composition. Journal of applied ecology, 56(3), 779-791.
[18]. Kaya Özdemirel, B., Turak, A.S. and Bilgin, C.C. (2016). Impact of large scale dam construction on movement corridors of mammals in Artvin, north-eastern Turkey. Appl Ecol Environ Res, 14(3), 489-507.
[19]. Kingswood, S.C. and Blank, D.A. (1996). Gazella subgutturosa. Mammalian species, 518, 1-10.
[20]. Kitanishi, S., Yamamoto, T., Edo, K. and Higashi, S. (2012). Influences of habitat fragmentation by damming on the genetic structure of masu salmon populations in Hokkaido, Japan. Conservation genetics, 13(4), 1017-1026.
[21]. Lees, A.C., Peres, C.A., Fearnside, P.M., Schneider, M. and Zuanon, J.A. (2016). Hydropower and the future of Amazonian biodiversity. Biodiversity and conservation, 25(3), 451-466.
[22]. Mairota, P., Cafarelli, B., Boccaccio, L., Leronni, V., Labadessa, R., Kosmidou, V. and Nagendra, H. (2013). Using landscape structure to develop quantitative baselines for protected area monitoring. Ecological indicators, 33, 82-95.
[23]. Maleki, m., Tavakoli Sabour, S.M., javan, F. (2018). Analysis of Dam Impacts on Vegetation of peripheral Areas at Different Heights and slopes (Case Study: Soleiman Shah and Gavashan Dams). Journal of Spatial-Space Research, 2(6), 102-117. (in Farsi).
[24]. Mann, C.C. and Plummer, M.L. (2000). Can science rescue salmon? Science, 289(5480), 716-719.
[25]. Martinez, A.E., Adeyemo, A.E. and Walther, S.C. (2019). Riparian vegetation and digitized channel variable changes after stream impoundment: the Provo River and Jordanelle Dam. In Geospatial Intelligence: Concepts, Methodologies, Tools, and Applications, pp, 1503-1521.
[26]. Mateo-Sanchez, M.C., Cushman, S.A. and Saura, S. (2014). Connecting endangered brown bear subpopulations in the Cantabrian Range (north-western Spain). Animal Conservation, 17, 430-440.
[27]. McCaffery, R., Jenkins, K.J., Cendejas-Zarelli, S., Happe, P.J. and Sager-Fradkin, K.A. (2020). Small mammals and ungulates respond to and interact with revegetation processes following dam removal. Food Webs, p.e00159.
[28]. Mohajeri, S.H., Najibi, S.M.A. and Shahraki, M. (2016). A Review of Methods to Protect the Environment in Dam Projects. Journal of Engineering and Construction Management, 1(2), 21-24. (in Farsi).
[29]. Mokhtari, S., Soltani Fard, S. and Yavari, A. (2010). Consideration of the Changing and Self-Organizing Trend in Hur-Al-Azim Wetland by Using Image Processing to Refer Landscape Ecology Approach-Khuzestan-Iran. Physical Geography Research Quarterly, 41(70), 93-105. (in Farsi).
[30]. Morgart, J.R., Hervert, J.J., Krausman, P.R., Bright, J.L. and Henry, R.S. (2005). Sonoran pronghorn use of anthropogenic and natural water sources. Wildlife Society Bulletin, 33(1), 51-60.
[31]. Morita, K., Morita, S.H. and Yamamoto, S. (2009). Effects of habitat fragmentation by damming on salmonid fishes: lessons from white-spotted charr in Japan. Ecological Research, 24(4), 711-722.
[32]. Mtkan, A.A., Saeedi, Kh. Shakiba, A. and Husseini Asl, A. (2011). Evaluation of Land Cover Change In Relation To Taleghan Dam Construction Rs Techniques. Journal of Geographical Sciences, 16(19), 45-64. (in Farsi).
[33]. Najmaee, M. (2003). Dam and Environment. Tehran. Ministry of Energy. (in Farsi).
[34]. Nicol, A.M. (1987). Livestock feeding on pasture. New Zealand Society of Animal Production. 238p.
[35]. Prach, K., Chenoweth, J. and Del Moral, R. (2019). Spontaneous and assisted restoration of vegetation on the bottom of a former water reservoir, the Elwha River, Olympic National Park, WA, USA. Restoration Ecology, 27(3), 592-599.
[36]. Oguzhan, S. and Aksoy, A.O. (2020). Experimental investigation of the effect of vegetation on dam break flood waves. Journal of Hydrology and Hydromechanics, 68(3), 231-241.
[37]. Rechisky, E.L., Welch, D.W., Porter, A.D., Jacobs-Scott, M.C. and Winchell, P.M. (2013). Influence of multiple dam passage on survival of juvenile Chinook salmon in the Columbia River estuary and coastal ocean. Proceedings of the National Academy of Sciences, 110(17), 6883-6888.
[38]. Sadegh oghli, R., Jahani, A., Alizadeh Shabani, A. and Goshtasb, H. (2019). Quantifying the Fragmentation of Landscape as an Index for the Assessment of the Wildlife Habitat (Case Study: Protected Area of Jajroud), Journal of Animal Environment, 11(1), 13-20. (in Farsi).
[39]. Salarvand, j. (2014). Investigating the effects of road and rail transport on wildlife (Case Study: wildlife refuge of azna sefid kooh). Second National Conference on Zagros Environmental Hazards. Tehran. Zagros Lorestan Association of Environmental Engineers. (in Farsi).
[40]. Serez, B.S. and Engindeniz, S. (2020). The Opinions and Expactations of the Farmers on Socio-Economic Impacts of Yortanlı Dam in Bergama District of Izmir Province. Selcuk Journal of Agriculture and Food Sciences, 34(2), 118-123.
[41]. shabanKary, M. and Halbian, A.h. (2010). Survey on Environmental Effects of Zayandeh Rood River’s Dam. Human and Environment, 8(1), 29-42. (in Farsi).
[42]. Tang, L., Zeng, G.M., Shen, G.L., Li, Y.P., Zhang, Y. and Huang, D.L. (2008). Rapid Detection of Picloram in Agricultural Field Samples Using a Disposable Immunomembrane-Based Electrochemical Sensor. Environmental science and technology, 42(4), 1207-1212.
[43]. Vatan Doost, S. and AlKhorshid, m. (2009). Environmental Impacts of Dam Construction on Biological Resources of Rivers in Southern Caspian Sea (Mazandaran Province). National Conference on Human, Environment and Sustainable Development. Hamedan, Islamic Azad University of Hamedan, 10p. (in Farsi).
[44]. Wu, H., Zeng, G., Liang, J., Chen, J., Xu, J., Dai, J., Sang, L., Li, X. and Ye, S. (2017). Responses of landscape pattern of China’s two largest freshwater lakes to early dry season after the impoundment of Three-Gorges Dam. International journal of applied earth observation and geoinformation, 56, 36-43.
[45]. Wu, H., Chen, J., Xu, J., Zeng, G., Sang, L., Liu, Q., Yin, Z., Dai, J., Yin, D., Liang, J. and Ye, S. 2019. Effects of dam construction on biodiversity: A review. Journal of cleaner production, 221, 480-489.