اثر محلول پاشی کودآهن بر برخی خصوصیات مورفوفیزیولوژیکی و فیتوشیمیایی سرخارگل (Echinaceae purpurea) تحت تیمارهای کم‌آبی

نوع مقاله: مقاله پژوهشی

نویسندگان

1 استادیار، گروه علوم باغبانی، دانشکده تولیدگیاهی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران.

2 دانشجوی دکتری گیاهان دارویی، گروه علوم باغبانی، دانشکده تولیدگیاهی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران.

3 دانش‌آموخته کارشناسی‌ارشد گیاهان دارویی، گروه علوم باغبانی، دانشکده تولیدگیاهی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران.

10.29252/aridbiom.2020.1816

چکیده

به‌‌منظور بررسی اثر رژیم‌های آبیاری و محلول‌پاشی نانوکلات‌آهن بر برخی ویژگی‌های رشدی، فیزیولوژیکی و بیوشیمیایی سرخارگل (Echinaceae purpurea (L.) Monch) آزمایشی به‌صورت فاکتوریل در قالب طرح بلوک کامل تصادفی در 3 تکرار در مزرعه تحقیقاتی مؤسسه غیرانتفاعی بهاران گرگان در سال زراعی 1397- 1396 به‌‌اجرا درآمد. تیمارهای آزمایش در چهار سطح دور آبیاری (شامل هر 3‌روز یکبار (شاهد)، 6، 9 و 12 روز یکبار آبیاری) به‌عنوان عامل اصلی و چهار سطح محلول‌پاشی نانوکلات‌آهن (عدم محلول‌پاشی (شاهد)، 3، 6 و 9 در هزار) لحاظ شد. نتایج نشان داد افزایش فاصله آبیاری سبب کاهش معنی‌دار ارتفاع بوته، وزن تازه و خشک گیاه، وزن تر و خشک ریشه شد. همچنین دور آبیاری در بالاترین سطح منجربه کاهش محتوای نسبی آب برگ و نشت یونی شد. میزان فعالیت آنتی‌اکسیدانی اندام هوایی و قند محلول تحت تاثیر دور آبیاری افزایش و در سطح سوم آبیاری به حداکثر مقدار خود رسید. محلول‌پاشی نانوکلات‌آهن نیز بر تمامی صفات اندازه‌گیری شده به‌جز فنل اندام هوایی و وزن تازه گیاه تاثیر معنی‌داری داشت. این اثر در سطوح سوم و چهارم تیمار بیشترین مقدار بود. نتایج اثر متقابل این دو عامل نشان داد که 6 روز یک‌بار آبیاری و محلول­پاشی 6 در هزار نانوکلات‌آهن موجب افزایش قند محلول و فعالیت آنتی‌اکسیدانی شده، بیشترین مقدار پرولین از سطح چهارم دور آبیاری و کاربرد 9 در هزار نانوکلات‌آهن مشاهده شد. نتایج این پژوهش نشان داد که افزایش شدت تنش خشکی باعث کاهش صفات مرفولوژیکی و محتوای نسبی آب برگ و افزایش پرولین، فعالیت آنتی‌اکسیدانی،‌ فنل، قند و نشت یونی شد. تیمار کودی نانوکلات‌آهن از گیاهان سرخارگل در برابر تنش خشکی محافظت نموده و باعث کاهش خسارت­های ناشی از تنش خشکی می‌شود. به‌طورکلی می‌توان اعمال 6 در هزار نانوکلات‌آهن را برای کاهش تأثیر سوء رژیم­های آبیاری توصیه کرد.

کلیدواژه‌ها


[1]. Abbaszadeh, B., Sharifi ashourabadi, E. Lebaschi, M.H., Naderi hajibagher Kandy, M., & Moghadami, F. (2008). The effect of drought stress on proline contents, soluble sugars, chlorophyll and relative water contents of balm (Melissa officinalis L.). Medicinal and Aromatic Plants, 4(23), 504-513. (in Farsi)
[2]. Abedi, T., & Pakniyat, H. (2010). Antioxidant enzyme changes in response to drought stress in ten cultivars of oilseed rape (Brassica napus L.). Czech Journal. Genetic Plant Breeding, 46, 27-34.
[3]. Abedini, T., Moradi, P., & Hani, A. (2015). Effect of organic fertilizer and foliar application of humic acid on some quantitative and qualitative yield of Pot marigold. Novel Applied Sciences, 4(10), 1100-1103.
[4]. Anjum, S.A., Xie, X.Y., Wang, L.C., Saleem, M.F., Man, C., & Lei, W. (2011). Morphological, physiological and biochemical responses of plants to drought stress. Agricultural Research, 6, 2026-2032.
[5]. Ardeshiri, M., & Jahan Bin, Sh. (2018). Effect of foliar application of nano-iron and zinc chelated on yield, yield components and harvest index of canola under drought stress conditionsCrops Improvement (Journal of Agriculture), 20(1), 31-43.
[6]. Ashrafi, M., Azimi-moqadam, M., Moradi, P., Mohsenifard, E., Shekari, F., & Kompany-zareh, M. (2018). Effect of drought stress on metabolite adjustments in drought tolerant and sensitive thyme. Plant Physiology and Biochemistry, 132, 391-399.
[8]. Azad, H., Fakheri, B.A., Mahdinezhad, N., & Parmoon, Q. (2017). The effect of foliar application of nano-iron chelated on antioxidant enzymes activity and flower yield of chamomile genotypes under drought stress conditionPlant Physiology, 19(2), 257-271. (in Farsi)
[9]. Azimi, A., Heshmati, G.A., Kianian, M.K., & Feizi, H. (2018). Effects of SiO2 Nanoparticles on Bromus kopetdaghensis Drobov Morphological Characteristics. Arid Biome, 8(1), 1-9. (in Farsi)
[10].Babaei, K., Amini Dehaghi, M., Modares Sanavi, S.A.M., & Jabari, R. (2010). Water deficit effect on morphology, prolin content and thymol percentage of thyme (Thymus vulgaris L.) Medicinal and Aromatic plants, 2(48), 239 – 251. (in Farsi)
[11].Baghaie, N., Keshavarz, N., AminiDehaghai, M., & Nazaran, M.H. (2012). Effect of Nano iron chelate fertilizer on yield and yield components of Cumin (Cuminum cyminum) under different irrigation intervals. National congress on Medicinal plants. Kish Island. Iran.
[12].Bannayan, M., Nadjafi, F., Azizi, M., Tabrizi L., & Rastgoo. M. (2008). Yield and seed quality of Plantago vate and Nigella sativa under different irrigation treatments. Industrial Crops and Products, 27, 11-16.
[13].Bartels, D., & Sunkar, R. (2005). Drought and salt tolerance in plants. Critical Reviews in Plant Sciences, 24, 23–58.
[14].Bates, S., Waldern, R. P., & Teare, E.D. (1973). Rapid determination of free proline for water stress studies. Plant Soil, 39, 205-207.
[15].Boscaiu, M., Sanchez, M., Bautista, I., Donat, P., Lidon, A., Llinares, J., Llul, C., Mayoral, O., & Vicente, O. (2010). Phenolic compounds as stress markers in plants from gypsum habitats.
[16].Bulletin of the University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca. Horticulture, 67, 44-49.
[17].Bostani, B. (2018). How amending calcareous soils with municipal solid waste compost affects Fe fractionation and availability to plant. Trace Elements in Medicine and Biology, 47, 149–155.
[18].De Carvalho, M.H.C. 2008. Drought stress and reactive oxygen species. Plant Signal Behav, 3(3), 156-165.
[19].Djiwanti, K.S.R. (2017). Nanotechnology for enhancing crop productivity, Nanotechnology, Springer, Singapore, 262.  
[20].Esmaeilizadeh, M., Lotfi, A., Mirdehghan, S.H., & Shamshiri, M.H. (2018). Effects of irrigation intervals on some physiological and biochemical characteristics in four Iranian grapevine cultivars. Crops Improvement, 20(1), 1-15.
[21].Gorgini Shabankareh, H., Fakheri, B.A., & Mohammadpour Vashvaie, R. (2017). The Effect of Bio-fertilizers on Growth, Grain and Essential Oil Yield of Fennel (Foeniculum vulgare Mill.) under Drought Stress. Agroecology, 19(1), 50-62. (in Farsi)
[22].Gorgini shabankareh, H., & Khorasaninejad, S. (2017). Effects of different levels of vermicompost on morphophysiological and essential oil characteristics of Peppermint (Mentha piperita L.) under water deficit regimes. Crop Production, 10(4), 59-74. (in Farsi)
[23].Jalil Shesh Bahre, M., & Movahedi Dehnavi, M. (2012). Effect of zinc and iron foliar application on soybean seed vigor grown under drought stress. Crop Production, 5 (1), 19-35. (in Farsi)
[24].Kafi, M., Borzoei, A., Salehi, M., Kamandi, A., Maasoumi, A., & Nabati, J. (2009). Physiology of Environmental Stresses in Plants. Mashhad Jahad daneshgahi, 502p. (in Farsi)
[25].Khorasaninejad, S., Mousavi, A., Soltanloo, H., Hemmati, Kh., & Khalighi, A. (2011). The effect of drought stress on growth parameters, essential oil yield and constituent of Peppermint (Mentha piperita L.). Medicinal Plants Research, 5(22), 5360-5365.
[26].Khorasaninejad, S., Soltanloo, H., Ramezanpour, S.S., Hadian, J., & Atashi, S. (2015). The Effect of Drought Stress on the Growth, Essential Oil Yield and Chemical Composition of Lavender. Crops Improvement (Agriculture), 17 (4), 979-988. (in Farsi)
[27].Lutts S., Kinet J.M., & Bouharmount J. (1996). Nacl- induced senescence in leaves of rice (Oryze sativa L.) Cultivars differing in salinity resistance. Annual Botany, 78, 389-398.
[28].Majlesi, A., & Gholinejhad, E. (2013). Phenotype and quality variation of forage maize (Zea mays L.) with potassium and micronutrient application under drought stress conditions. Research in Field Crops, 1(2), 44-55. (in Farsi)
[29].Maleki Farahani, A., & Aghighi Shahverdi, M. (2015). Evaluation the effect of nono-iron fertilizer in compare to iron chelate fertilizer on qualitative and quantitative yield of saffronCrops Improvement (Agriculture), 17(1), 155-168.
[30].Martin‐Fernandez, S., Lopez‐Rayo, L., Hernandez‐Apaolaza, J., & Lucena, J. (2017). Timing for a sustainable fertilisation of Glycine max by using HBED/Fe3+ and EDDHA/ Fe3+ chelates. Food and Agriculture, 97, 2773–2781.
[31].McDonald, R.P., & Ho, M.H.R. (2002). Principles and practice in reporting structural equation analyses. Psychological methods,7(1), 64.
[32].Miransari, A. (2013). Soil microbes and the availability of soil nutrients, Acta Physiologiae P lantarum, 35, 3075–3084. (in Farsi)
[34].Moghadam E., Mahmoodi Sourestani M., Farrokhian Firozi A., Ramazani Z., & Eskandari F. (2016). The effect of foliar application of iron chelate type on morphological traits and essential oil content of holy basil (Ocimum sanctum). Crop Improvement, 17 (3), 595-606. (in Farsi)
[35].Mohammadi Alborzi M., Safikhani F., Masoud Sinaki J., & Abbaszadeh B. (2012). The effect of drought on morphological characteristics of anisum (Pimpinella anisum L.). Plant Ecophysiology (Arsanjan Branch), 4, 14-25. (in Farsi)
[36].Mozaffari, S., Khorasaninejad, S., & Gorgini shabankareh,H. (2017).The effects of irrigation regimes and humic acid on some of physiological and biochemical traits of Common Purslane in greenhouse. Crops Improvement (Agriculture), 19(2), 401-416.
[37].Omokolo, N.D., Nankeu, D.J., Niemenak, N., & Djocgoue, P.F. (2002). Analysis of amino acids and carbohydrates in the cortex of nine clones of Theobroma cacao L. in relation to their susceptibility to Phytophthora megakarya Bra. and Grif. Crop Protection, 21(5), 395-402.
[38].Parkhideh, J., Barzegar, T., Nekonam, F., & Nikbakht, J. (2018). Evaluation of growth, yield, and physiological responses of Bitter Apple (Citrullus colocynthis) under deficit irrigation stress conditions. Crops Improvement (Agricultural Crops Production), 20(2), 357-369. (in Farsi)
[39].Pirzad, A., & Shokrani, F., 2012. Effects of iron application on growth characters and flower yield of Calendula officinalis L. under water stress. World Applied Sciences, 18 (9), 1203-1208.
[40].Ramzani, P.M.A., Khalid, M. Naveed, M., Irum, A., & Kausar, S. (2016). Iron biofortification of cereals grown under calcareous soils: problems and solutions, Soil Science: Agricultural and Environmental Prospectives, Springer, Cham, 231–258p.
[41].Ramroudi, M., Chezgi, M., & Galavi, M. (2017). Effect of methanol spraying on quantitative traits and osmatic adjustments in Moldavian (Dracocephlum moldavica L.) under low irrigation conditions. Crops Production, 48 (1), 149-158. (in Farsi)
[42].Safari, M., Arghavani, M., & Kheiri, A. (2018). Effect of salicylic acid on morphological and physiological characteristics of vetiver grass under water deficit stress conditions. Crops Improvement (Agricultural Crops Production), 19(3), 591-603. (in Farsi)
[43]. Sanches-Rodrigues, E., Rubio-Welhelmi, M.D., Cervilla, L.M., Blasco, B., Rios, J.J., Leyva, R., Romero, L. & Ruiz, J.M. (2010). Study of the ionome and uptake fluxes in cherry tomato plants under moderate water stress conditions. Plant Soil, 335, 339-347.
[44].Sanjari Mijani, M., Sirousmehr, A.R., & Fakheri, B.A. (2015).The effects of drought stress and humic acid on some physiological characteristics of roselle (Hibiscus sabdariffa). Agricultural Crops Improvement, 17(2), 403-414.
[45].Sun, B., Jing, Y., Chen, K., Song. L., Chen, F., & Zhang, L. (2007). Protective effect of nitric oxide on iron deficiency-induced oxidative stress in maize (Zea mays). Plant Physiology, 164, 536-543.
[46].Taheri Asghari, M. (2010). Effects of water deficit stress on some characteristics of chicory (Cichorium intybus L.) under different plant densities. Crop Ecophysiology, 2 (3), 147-155. (in Farsi)
[47]. Tian, X. & Lei, Y. (2006). Nitric oxide treatment alleviates drought stress in wheat seedlings. Biologia Plantarum, 50(4), 775-778.
[48].Yamasaki, S. & Dillenburg, L.R. (1999). Measurements of leaf relative water content in Araucaria angustifoliaRevista Brasilleira de Fisiologia Vegetal, 11(2), 69-75.
[49].Zafari, H. & Jahanbakhsh, S. (2018). The impact of bio-fertilizers to increase compatibility osmolytes in the alfalfa under water stress conditions. Plant Researches, 31(1), 194-205.